Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Exploratory analysis of concept and document spaces with connectionist networks

Exploratory analysis of concept and document spaces with connectionist networks Exploratory analysis is an area of increasing interest in the computational linguistics arena. Pragmatically speaking, exploratory analysis may be paraphrased as natural language processing by means of analyzing large corpora of text. Concerning the analysis, appropriate means are statistics, on the one hand, and artificial neural networks, on the other hand. As a challenging application area for exploratory analysis of text corpora we may certainly identify text databases, be it information retrieval or information filtering systems. With this paper we present recent findings of exploratory analysis based on both statistical and neural models applied to legal text corpora. Concerning the artificial neural networks, we rely on a model adhering to the unsupervised learning paradigm. This choice appears naturally when taking into account the specific properties of large text corpora where one is faced with the fact that input-output-mappings as required by supervised learning models cannot be provided beforehand to a satisfying extent. This is due to the fact of the highly changing contents of text archives. In a nutshell, artificial neural networks count for their highly robust behavior regarding the parameters for model optimization. In particular, we found statistical classification techniques much more susceptible to minor parameter variations than unsupervised artificial neural networks. In this paper we describe two different lines of research in exploratory analysis. First, we use the classification methods for concept analysis. The general goal is to uncover different meanings of one and the same natural language concept. A task that, obviously, is of specific importance during the creation of thesauri. As a convenient environment to present the results we selected the legal term of “neutrality”, which is a perfect representative of a concept having a number of highly divergent meanings. Second, we describe the classification methods in the setting of document classification. The ultimate goal in such an application is to uncover semantic similarities of various text documents in order to increase the efficiency of an information retrieval system. In this sense, document classification has its fixed position in information retrieval research from the very beginning. Nowadays renewed massive interest in document classification may be witnessed due to the appearance of large-scale digital libraries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Artificial Intelligence and Law Springer Journals

Exploratory analysis of concept and document spaces with connectionist networks

Loading next page...
 
/lp/springer-journals/exploratory-analysis-of-concept-and-document-spaces-with-connectionist-h4Yqp03P2p
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Computer Science; Artificial Intelligence (incl. Robotics); International IT and Media Law, Intellectual Property Law; Philosophy of Law; Legal Aspects of Computing; Information Storage and Retrieval
ISSN
0924-8463
eISSN
1572-8382
DOI
10.1023/A:1008365524782
Publisher site
See Article on Publisher Site

Abstract

Exploratory analysis is an area of increasing interest in the computational linguistics arena. Pragmatically speaking, exploratory analysis may be paraphrased as natural language processing by means of analyzing large corpora of text. Concerning the analysis, appropriate means are statistics, on the one hand, and artificial neural networks, on the other hand. As a challenging application area for exploratory analysis of text corpora we may certainly identify text databases, be it information retrieval or information filtering systems. With this paper we present recent findings of exploratory analysis based on both statistical and neural models applied to legal text corpora. Concerning the artificial neural networks, we rely on a model adhering to the unsupervised learning paradigm. This choice appears naturally when taking into account the specific properties of large text corpora where one is faced with the fact that input-output-mappings as required by supervised learning models cannot be provided beforehand to a satisfying extent. This is due to the fact of the highly changing contents of text archives. In a nutshell, artificial neural networks count for their highly robust behavior regarding the parameters for model optimization. In particular, we found statistical classification techniques much more susceptible to minor parameter variations than unsupervised artificial neural networks. In this paper we describe two different lines of research in exploratory analysis. First, we use the classification methods for concept analysis. The general goal is to uncover different meanings of one and the same natural language concept. A task that, obviously, is of specific importance during the creation of thesauri. As a convenient environment to present the results we selected the legal term of “neutrality”, which is a perfect representative of a concept having a number of highly divergent meanings. Second, we describe the classification methods in the setting of document classification. The ultimate goal in such an application is to uncover semantic similarities of various text documents in order to increase the efficiency of an information retrieval system. In this sense, document classification has its fixed position in information retrieval research from the very beginning. Nowadays renewed massive interest in document classification may be witnessed due to the appearance of large-scale digital libraries.

Journal

Artificial Intelligence and LawSpringer Journals

Published: Sep 30, 2004

References