Access the full text.
Sign up today, get DeepDyve free for 14 days.
We study the existence of nontrivial nonlocal nonnegative solutions u(x, t) of the nonlinear initial value problems (∂t-Δ)αu≥uλinRn×R,n≥1u=0inRn×(-∞,0)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} (\partial _t -\Delta )^\alpha u\ge u^\lambda &{}\quad \mathrm{in}\,\, {\mathbb {R}}^n \times {\mathbb {R}},\,n\ge 1 \\ u=0 &{}\quad \mathrm{in}\,\, {\mathbb {R}}^n \times (-\infty ,0) \end{array}\right. \end{aligned}$$\end{document}and C1uλ≤(∂t-Δ)αu≤C2uλinRn×R,n≥1u=0inRn×(-∞,0),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} C_1 u^\lambda \le (\partial _t -\Delta )^\alpha u\le C_2 u^\lambda &{}\quad \mathrm{in}\,{\mathbb {R}}^n \times {\mathbb {R}},\,n\ge 1 \\ u=0 &{}\quad \mathrm{in}\, {\mathbb {R}}^n \times (-\infty ,0), \end{array}\right. \end{aligned}$$\end{document}where λ,α,C1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda ,\alpha ,C_1$$\end{document}, and C2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C_2$$\end{document} are positive constants with C1<C2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C_1 <C_2$$\end{document}. We use the definition of the fractional heat operator (∂t-Δ)α\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\partial _t -\Delta )^\alpha $$\end{document} given in Taliaferro (J Math Pures Appl 133:287–328, 2020) and compare our results in the classical case α=1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha =1$$\end{document} to known results.
Journal of Evolution Equations – Springer Journals
Published: Dec 1, 2021
Keywords: Fully fractional heat operator; Nonlocal solution; Initial value problem; Positive solution; Critical exponent; 35B09; 35B33; 35K58; 35R11
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.