Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this paper, we study existence and non-existence of weak solutions for semilinear bi-Δγ-\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$-\Delta _{\gamma }-$$\end{document}Laplace equation Δγ2u=f(x,u)inΩ,u=∂νu=0on∂Ω,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \Delta ^2_\gamma u=f(x,u) \ \text { in }\Omega , \quad u= \partial _\nu u =0 \; \text { on }\partial \Omega , \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document} is a bounded domain with smooth boundary in RN(N≥2),f(x,ξ)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {R}^N \ (N \ge 2), f(x,\xi ) $$\end{document} is a Carathéodory function and Δγ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \Delta _{\gamma }$$\end{document} is the subelliptic operator of the type Δγ:=∑j=1N∂xjγj2∂xj,∂xj:=∂∂xj,γ=(γ1,γ2,...,γN),Δγ2:=Δγ(Δγ).\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \Delta _\gamma : =\sum \limits _{j=1}^{N}\partial _{x_j} \left( \gamma _j^2 \partial _{x_j} \right) , \quad \partial _{x_j}: =\frac{\partial }{\partial x_{j}}, \gamma = (\gamma _1, \gamma _2, ..., \gamma _N),\quad \Delta ^2_\gamma : =\Delta _\gamma (\Delta _\gamma ). \end{aligned}$$\end{document}
Bulletin of the Malaysian Mathematical Sciences Society – Springer Journals
Published: Mar 1, 2022
Keywords: Bi-Δγ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta _{\gamma }-$$\end{document}Laplace equations; Δγ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _\gamma -$$\end{document}Laplace operator; Pohozaev’s type identities; Nontrivial solutions; Weak solutions; Existence; Multiple solutions; Primary 35J35; Secondary 35J50; 35J60
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.