Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Existence and Multiplicity of Solutions for the Equation with Nonlocal Integrodifferential Operator

Existence and Multiplicity of Solutions for the Equation with Nonlocal Integrodifferential Operator We are concerned with the following elliptic equation with a general nonlocal integrodifferential operator LK\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {L}}_K$$\end{document}-LKu=λu+f(x,u),inΩ,u=0,inRn\Ω,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \begin{aligned} \left\{ \begin{array}{ll} -{\mathcal {L}}_Ku=\lambda u+f(x,u), &{}\quad \text {in}\quad \Omega ,\\ u=0, &{} \quad \text {in}\quad {\mathbb {R}}^n{\setminus }\Omega , \end{array}\right. \end{aligned} \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document} be an open-bounded set of Rn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {R}}^n$$\end{document} with continuous boundary, λ∈R\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda \in {\mathbb {R}}$$\end{document} is a real parameter, and f is a nonlinear term with subcritical growth. We show the existence of a ground state and infinitely many pairs of solutions. The proof is based on the method of Nehari manifold for the equation with λ<λ1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda <\lambda _1$$\end{document}, where λ1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda _1$$\end{document} is the first eigenvalue of the nonlocal operator -LK\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$-{\mathcal {L}}_K$$\end{document} with homogeneous Dirichlet boundary condition, and the method of generalized Nehari manifold for the equation with λ≥λ1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda \ge \lambda _1$$\end{document}. As a concrete example, we derive the existence and multiplicity of solutions for the equation driven by fractional Laplacian (-Δ)αu=λu+f(x,u),inΩ,u=0,inRn\Ω,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^\alpha u=\lambda u+f(x,u),&{}\quad \text {in}\quad \Omega ,\\ u=0, &{}\quad \text {in}\quad {\mathbb {R}}^n{\setminus }\Omega , \end{array}\right. \end{aligned} \end{aligned}$$\end{document}where 0<α<1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0<\alpha <1$$\end{document}. The results presented here may be viewed as the extension of some classical results for the Laplacian to nonlocal fractional setting. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the Malaysian Mathematical Sciences Society Springer Journals

Existence and Multiplicity of Solutions for the Equation with Nonlocal Integrodifferential Operator

Loading next page...
 
/lp/springer-journals/existence-and-multiplicity-of-solutions-for-the-equation-with-nonlocal-q4yWXxTbA2

References (34)

Publisher
Springer Journals
Copyright
Copyright © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020
ISSN
0126-6705
eISSN
2180-4206
DOI
10.1007/s40840-020-00995-8
Publisher site
See Article on Publisher Site

Abstract

We are concerned with the following elliptic equation with a general nonlocal integrodifferential operator LK\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {L}}_K$$\end{document}-LKu=λu+f(x,u),inΩ,u=0,inRn\Ω,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \begin{aligned} \left\{ \begin{array}{ll} -{\mathcal {L}}_Ku=\lambda u+f(x,u), &{}\quad \text {in}\quad \Omega ,\\ u=0, &{} \quad \text {in}\quad {\mathbb {R}}^n{\setminus }\Omega , \end{array}\right. \end{aligned} \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document} be an open-bounded set of Rn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {R}}^n$$\end{document} with continuous boundary, λ∈R\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda \in {\mathbb {R}}$$\end{document} is a real parameter, and f is a nonlinear term with subcritical growth. We show the existence of a ground state and infinitely many pairs of solutions. The proof is based on the method of Nehari manifold for the equation with λ<λ1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda <\lambda _1$$\end{document}, where λ1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda _1$$\end{document} is the first eigenvalue of the nonlocal operator -LK\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$-{\mathcal {L}}_K$$\end{document} with homogeneous Dirichlet boundary condition, and the method of generalized Nehari manifold for the equation with λ≥λ1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda \ge \lambda _1$$\end{document}. As a concrete example, we derive the existence and multiplicity of solutions for the equation driven by fractional Laplacian (-Δ)αu=λu+f(x,u),inΩ,u=0,inRn\Ω,\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^\alpha u=\lambda u+f(x,u),&{}\quad \text {in}\quad \Omega ,\\ u=0, &{}\quad \text {in}\quad {\mathbb {R}}^n{\setminus }\Omega , \end{array}\right. \end{aligned} \end{aligned}$$\end{document}where 0<α<1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0<\alpha <1$$\end{document}. The results presented here may be viewed as the extension of some classical results for the Laplacian to nonlocal fractional setting.

Journal

Bulletin of the Malaysian Mathematical Sciences SocietySpringer Journals

Published: Aug 20, 2020

There are no references for this article.