Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Evaluation of Sloped Bottom Tuned Liquid Damper for Reduction of Seismic Response of Tall Buildings

Evaluation of Sloped Bottom Tuned Liquid Damper for Reduction of Seismic Response of Tall Buildings Due to migration of people to urban area, high land costs and use of light weight materials modern buildings tend to be taller, lighter and flexible. These buildings possess low damping. This increases the possibility of failure during earthquake ground motion and also affect the serviceability during wind vibrations. Out of many available techniques today, to reduce the response of structure under dynamic loading, Tuned Liquid Damper (TLD) is a recent technique to mitigate seismic response. However TLD has been used to mitigate the wind induced structural vibrations. Flat bottom TLD gives energy back to the structure after event of dynamic loading and it is termed as beating. Beating affects the performance of TLD. Study attempts to analyze the effectiveness of sloped bottom TLD for reducing seismic vibrations of structure. Concept of equivalent flat bottom LD has been used to analyze sloped bottom TLD. Finite element method (EM) is used to model the structure and the liquid in the TLD. MATLAB code is developed to study the response of structure, the liquid sloshing in the tank and the coupled fluid-structure interaction. A ten storey two bay RC frame is analyzed for few inputs of ground motion. A sinusoidal ground motion corresponding to resonance condition with fundamental frequency of frame is analyzed. In the analysis the inherent damping of structure is not considered. Observations from the study shows that sloped bottom TLD uses less amount of liquid than flat bottom TLD. Also observed that efficiency of sloped bottom TLD can be improved if it is properly tuned. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of The Institution of Engineers (India): Series A Springer Journals

Evaluation of Sloped Bottom Tuned Liquid Damper for Reduction of Seismic Response of Tall Buildings

Loading next page...
 
/lp/springer-journals/evaluation-of-sloped-bottom-tuned-liquid-damper-for-reduction-of-b0qc5PdKyy
Publisher
Springer Journals
Copyright
Copyright © 2016 by The Institution of Engineers (India)
Subject
Engineering; Civil Engineering
ISSN
2250-2149
eISSN
2250-2157
DOI
10.1007/s40030-016-0185-8
Publisher site
See Article on Publisher Site

Abstract

Due to migration of people to urban area, high land costs and use of light weight materials modern buildings tend to be taller, lighter and flexible. These buildings possess low damping. This increases the possibility of failure during earthquake ground motion and also affect the serviceability during wind vibrations. Out of many available techniques today, to reduce the response of structure under dynamic loading, Tuned Liquid Damper (TLD) is a recent technique to mitigate seismic response. However TLD has been used to mitigate the wind induced structural vibrations. Flat bottom TLD gives energy back to the structure after event of dynamic loading and it is termed as beating. Beating affects the performance of TLD. Study attempts to analyze the effectiveness of sloped bottom TLD for reducing seismic vibrations of structure. Concept of equivalent flat bottom LD has been used to analyze sloped bottom TLD. Finite element method (EM) is used to model the structure and the liquid in the TLD. MATLAB code is developed to study the response of structure, the liquid sloshing in the tank and the coupled fluid-structure interaction. A ten storey two bay RC frame is analyzed for few inputs of ground motion. A sinusoidal ground motion corresponding to resonance condition with fundamental frequency of frame is analyzed. In the analysis the inherent damping of structure is not considered. Observations from the study shows that sloped bottom TLD uses less amount of liquid than flat bottom TLD. Also observed that efficiency of sloped bottom TLD can be improved if it is properly tuned.

Journal

Journal of The Institution of Engineers (India): Series ASpringer Journals

Published: Nov 18, 2016

References