Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Evaluation of Hyaluronic Acid/Agarose Hydrogel for Cartilage Tissue Engineering Biomaterial

Evaluation of Hyaluronic Acid/Agarose Hydrogel for Cartilage Tissue Engineering Biomaterial Hyaluronic acid (HA) is one of the most applied biomaterials in a tissue engineering field due to its biocompatibility and its presence in the native extracellular matrix (ECM) of tissues. However, the mechanical property of the HA is weak and requires specific treatment to improve its properties. The application of Agarose (AG) hydrogel is widely studied and used as a support for the three-dimensional culture of cells due to its biocompatibility. Nevertheless, AG itself lacks the biological environment of the matrix which is unsuitable for the growth of the encapsulated cells. In this study, the composite of HA hydrogel and AG hydrogel (HA/AG hydrogel) is proposed to supplement the drawbacks of each hydrogel. HA provided enhanced microenvironment of matrix and AG improved the mechanical properties and assisted the cells. The characterization of the blended hydrogels was carried out with FT-IR, weight loss, swelling ratio, and compressive strength study. The biocompatibility and biological environment of the composite was evaluated by dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide; thiazolyl blue (MTT), live/dead staining, and morphological study. The composite biomaterial exhibited applicability for cartilage tissue engineering and the in vitro study of the cell-laden HA/AG hydrogel displayed potential for cartilage tissue engineering in the future.[graphic not available: see fulltext] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Macromolecular Research" Springer Journals

Evaluation of Hyaluronic Acid/Agarose Hydrogel for Cartilage Tissue Engineering Biomaterial

Loading next page...
 
/lp/springer-journals/evaluation-of-hyaluronic-acid-agarose-hydrogel-for-cartilage-tissue-Mqx0Y0G9kw

References (50)

Publisher
Springer Journals
Copyright
Copyright © The Polymer Society of Korea and Springer 2020
ISSN
1598-5032
eISSN
2092-7673
DOI
10.1007/s13233-020-8137-6
Publisher site
See Article on Publisher Site

Abstract

Hyaluronic acid (HA) is one of the most applied biomaterials in a tissue engineering field due to its biocompatibility and its presence in the native extracellular matrix (ECM) of tissues. However, the mechanical property of the HA is weak and requires specific treatment to improve its properties. The application of Agarose (AG) hydrogel is widely studied and used as a support for the three-dimensional culture of cells due to its biocompatibility. Nevertheless, AG itself lacks the biological environment of the matrix which is unsuitable for the growth of the encapsulated cells. In this study, the composite of HA hydrogel and AG hydrogel (HA/AG hydrogel) is proposed to supplement the drawbacks of each hydrogel. HA provided enhanced microenvironment of matrix and AG improved the mechanical properties and assisted the cells. The characterization of the blended hydrogels was carried out with FT-IR, weight loss, swelling ratio, and compressive strength study. The biocompatibility and biological environment of the composite was evaluated by dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide; thiazolyl blue (MTT), live/dead staining, and morphological study. The composite biomaterial exhibited applicability for cartilage tissue engineering and the in vitro study of the cell-laden HA/AG hydrogel displayed potential for cartilage tissue engineering in the future.[graphic not available: see fulltext]

Journal

"Macromolecular Research"Springer Journals

Published: Oct 18, 2020

There are no references for this article.