Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Equivalent Strut Method for the Modelling of Masonry Infill Walls in the Nonlinear Static Analysis of Buildings

Equivalent Strut Method for the Modelling of Masonry Infill Walls in the Nonlinear Static... In the seismic analysis of a framed building with masonry infill walls, it is necessary to model the effect of the walls on the lateral stiffness, strength and ductility of the building. The equivalent strut method is convenient for modelling the walls in a large building. However, an appropriate axial load versus deformation relationship for the strut is required in a nonlinear static method of seismic analysis, such as the pushover analysis. The present study proposes a nonlinear axial hinge property for the strut, with suitable performance levels. First, the equivalent strut method and the suitability of two approaches available in the literature for modelling the properties of the struts, are briefly discussed. Next, the nonlinear axial load versus deformation relationship is developed based on experimental data compiled from the literature. The parabolic–plastic relationship is idealized as a tri-linear axial hinge property, so that it can be incorporated in commercial software for undertaking pushover analysis. Next, the use of the hinge property is demonstrated in the pushover analyses of two framed reinforced concrete buildings. The pushover curves based on the proposed hinge property shows improved modelling of the inelastic drifts of the buildings. Although the modelling of a wall using a single strut has limitations, the proposed methodology is practical for a pushover analysis of a building. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of The Institution of Engineers (India): Series A Springer Journals

Equivalent Strut Method for the Modelling of Masonry Infill Walls in the Nonlinear Static Analysis of Buildings

Loading next page...
 
/lp/springer-journals/equivalent-strut-method-for-the-modelling-of-masonry-infill-walls-in-imeLCnkNEW
Publisher
Springer Journals
Copyright
Copyright © 2013 by The Institution of Engineers (India)
Subject
Engineering; Civil Engineering
ISSN
2250-2149
eISSN
2250-2157
DOI
10.1007/s40030-013-0042-y
Publisher site
See Article on Publisher Site

Abstract

In the seismic analysis of a framed building with masonry infill walls, it is necessary to model the effect of the walls on the lateral stiffness, strength and ductility of the building. The equivalent strut method is convenient for modelling the walls in a large building. However, an appropriate axial load versus deformation relationship for the strut is required in a nonlinear static method of seismic analysis, such as the pushover analysis. The present study proposes a nonlinear axial hinge property for the strut, with suitable performance levels. First, the equivalent strut method and the suitability of two approaches available in the literature for modelling the properties of the struts, are briefly discussed. Next, the nonlinear axial load versus deformation relationship is developed based on experimental data compiled from the literature. The parabolic–plastic relationship is idealized as a tri-linear axial hinge property, so that it can be incorporated in commercial software for undertaking pushover analysis. Next, the use of the hinge property is demonstrated in the pushover analyses of two framed reinforced concrete buildings. The pushover curves based on the proposed hinge property shows improved modelling of the inelastic drifts of the buildings. Although the modelling of a wall using a single strut has limitations, the proposed methodology is practical for a pushover analysis of a building.

Journal

Journal of The Institution of Engineers (India): Series ASpringer Journals

Published: Oct 30, 2013

References