Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Ejectors for pressure recovery systems of supersonic chemical lasers

Ejectors for pressure recovery systems of supersonic chemical lasers Abstract Results of a numerical study of performance characteristics of supersonic ejectors with nozzles of different types are reported. The work was carried out with the aim of developing a high-performance ejector for pressure recovery systems of supersonic chemical lasers. A specific feature of the operation of ejectors in pressure recovery systems consists in that, in this case, the ejecting and ejected gases, as they undergo mixing, have different thermodynamic properties, and the ejection coefficient depends on the ratio between the temperatures of the gases and on the ratio of their molecular masses. Since the operation of an ejector is based on the mixing process, the task consisted in intensification of this process using nozzles of special geometries. The performance of ejectors was judged considering an integral parameter, the product of induction by compression ratio. The calculations of the 3D viscous gas flow in the ejector channel were performed using ANSYS software. In verifying the numerical model, a comparison with experimental data obtained earlier on a model ejector facility and during tests of real pressure recovery systems in operation with supersonic chemical lasers was performed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Thermophysics and Aeromechanics Springer Journals

Ejectors for pressure recovery systems of supersonic chemical lasers

Loading next page...
 
/lp/springer-journals/ejectors-for-pressure-recovery-systems-of-supersonic-chemical-lasers-X80yjfkquE
Publisher
Springer Journals
Copyright
2017 Pleiades Publishing, Ltd.
ISSN
0869-8643
eISSN
1531-8699
DOI
10.1134/S0869864317030118
Publisher site
See Article on Publisher Site

Abstract

Abstract Results of a numerical study of performance characteristics of supersonic ejectors with nozzles of different types are reported. The work was carried out with the aim of developing a high-performance ejector for pressure recovery systems of supersonic chemical lasers. A specific feature of the operation of ejectors in pressure recovery systems consists in that, in this case, the ejecting and ejected gases, as they undergo mixing, have different thermodynamic properties, and the ejection coefficient depends on the ratio between the temperatures of the gases and on the ratio of their molecular masses. Since the operation of an ejector is based on the mixing process, the task consisted in intensification of this process using nozzles of special geometries. The performance of ejectors was judged considering an integral parameter, the product of induction by compression ratio. The calculations of the 3D viscous gas flow in the ejector channel were performed using ANSYS software. In verifying the numerical model, a comparison with experimental data obtained earlier on a model ejector facility and during tests of real pressure recovery systems in operation with supersonic chemical lasers was performed.

Journal

Thermophysics and AeromechanicsSpringer Journals

Published: May 1, 2017

References