Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Eigenfrequencies of a tube bundle immersed in a fluid

Eigenfrequencies of a tube bundle immersed in a fluid In this paper we study a simplified version of a mathematical model that describes the eigenfrequencies and eigenmotions of a coupled system consisting of a set of tubes (or a tube bundle) immersed in an incompressible perfect fluid. The fluid is assumed to be contained in a rectangular cavity, and the tubes are assumed to be identical, and periodically distributed in the cavity. The mathematical model that governs this physical problem is an elliptic differential eigenvalue problem consisting of the Laplace equation with a nonlocal boundary condition on the holes, and a homogeneous Neumann boundary condition on the boundary of the cavity. In the simplified model that we study in this paper, the Neumann condition is replaced by a periodic boundary condition. Our goal in studying this simple version is to derive some basic properties of the problem that could serve as a guide to envisage similar properties for the original model. In practical situations, this kind of problem needs to be solved for tube bundles containing a very large number of tubes. Then the numerical analysis of these problems is in practice very expensive. Several approaches to overcome this difficulty have been proposed in the last years using homogenization techniques. Alternatively, we propose in this paper an approach that consists in obtaining an explicit decomposition of the problem into a finite family of subproblems, which can be easily solved numerically. Our study is based on a generalized notion of periodic function, and on a decomposition theorem for periodic functions that we introduce in the paper. Our results rely on the theory of almost periodic functions, and they provide a simple numerical method for obtaining approximations of all the eigenvalues of the problem for any number of tubes in the cavity. We also discuss a numerical example. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Eigenfrequencies of a tube bundle immersed in a fluid

Loading next page...
 
/lp/springer-journals/eigenfrequencies-of-a-tube-bundle-immersed-in-a-fluid-pFryrf0RoK

References (8)

Publisher
Springer Journals
Copyright
Copyright © 1988 by Springer-Verlag New York Inc.
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
DOI
10.1007/BF01443613
Publisher site
See Article on Publisher Site

Abstract

In this paper we study a simplified version of a mathematical model that describes the eigenfrequencies and eigenmotions of a coupled system consisting of a set of tubes (or a tube bundle) immersed in an incompressible perfect fluid. The fluid is assumed to be contained in a rectangular cavity, and the tubes are assumed to be identical, and periodically distributed in the cavity. The mathematical model that governs this physical problem is an elliptic differential eigenvalue problem consisting of the Laplace equation with a nonlocal boundary condition on the holes, and a homogeneous Neumann boundary condition on the boundary of the cavity. In the simplified model that we study in this paper, the Neumann condition is replaced by a periodic boundary condition. Our goal in studying this simple version is to derive some basic properties of the problem that could serve as a guide to envisage similar properties for the original model. In practical situations, this kind of problem needs to be solved for tube bundles containing a very large number of tubes. Then the numerical analysis of these problems is in practice very expensive. Several approaches to overcome this difficulty have been proposed in the last years using homogenization techniques. Alternatively, we propose in this paper an approach that consists in obtaining an explicit decomposition of the problem into a finite family of subproblems, which can be easily solved numerically. Our study is based on a generalized notion of periodic function, and on a decomposition theorem for periodic functions that we introduce in the paper. Our results rely on the theory of almost periodic functions, and they provide a simple numerical method for obtaining approximations of all the eigenvalues of the problem for any number of tubes in the cavity. We also discuss a numerical example.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Mar 23, 2005

There are no references for this article.