Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effect of positional eccentricity of blast source on beam–column joint response of framed systems

Effect of positional eccentricity of blast source on beam–column joint response of framed systems A significant rise has been observed in explosion-related activities in all over the world and India is no exception to it. Previous few years have seen research emphasize on structures subjected to impact loading by blast either due to natural, accidental or intentional events. With the magnitude of impact load by blast being high, design and construction cost incurred is huge. As such conventional structural designs do not consider effect of blast load. Blast load is influenced by four parameters: weight of explosives, types of explosives, standoff distance and critical location of detonation with respect to structure. In this study, we mainly focus to find out the critical location of detonation with respect to structure and here it is achieved by contemplating the effect of positional eccentricity of blast source on G + 3 RCC frame building using time history analysis. In this study, the calculation of various parameters is done for each beam column joint as per specifications given by IS code. The blast parameters have been calculated manually as per IS 4991 and then the structure is analyzed for the calculated blast load. The response parameters considered for comparative analysis in this study are storey shear and displacement, joint acceleration, and velocity shear stress. The objective of this study has been to observe structural performance for three different eccentric positions of blast source with respect to center line of the building. It will help in identifying critical location of detonation for framed structures and thus help in designing structural members at critical positions, making the design process efficient and economical. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Innovative Infrastructure Solutions Springer Journals

Effect of positional eccentricity of blast source on beam–column joint response of framed systems

Loading next page...
 
/lp/springer-journals/effect-of-positional-eccentricity-of-blast-source-on-beam-column-joint-lRb5VQb9zc
Publisher
Springer Journals
Copyright
Copyright © Springer Nature Switzerland AG 2022
ISSN
2364-4176
eISSN
2364-4184
DOI
10.1007/s41062-022-00775-2
Publisher site
See Article on Publisher Site

Abstract

A significant rise has been observed in explosion-related activities in all over the world and India is no exception to it. Previous few years have seen research emphasize on structures subjected to impact loading by blast either due to natural, accidental or intentional events. With the magnitude of impact load by blast being high, design and construction cost incurred is huge. As such conventional structural designs do not consider effect of blast load. Blast load is influenced by four parameters: weight of explosives, types of explosives, standoff distance and critical location of detonation with respect to structure. In this study, we mainly focus to find out the critical location of detonation with respect to structure and here it is achieved by contemplating the effect of positional eccentricity of blast source on G + 3 RCC frame building using time history analysis. In this study, the calculation of various parameters is done for each beam column joint as per specifications given by IS code. The blast parameters have been calculated manually as per IS 4991 and then the structure is analyzed for the calculated blast load. The response parameters considered for comparative analysis in this study are storey shear and displacement, joint acceleration, and velocity shear stress. The objective of this study has been to observe structural performance for three different eccentric positions of blast source with respect to center line of the building. It will help in identifying critical location of detonation for framed structures and thus help in designing structural members at critical positions, making the design process efficient and economical.

Journal

Innovative Infrastructure SolutionsSpringer Journals

Published: Apr 1, 2022

Keywords: Blast resilience; Stand-off distance; Impact loading; Position of blast; Eccentricity; Beam–column joint; Joint acceleration

References