Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effect of fiber diameter on surface morphology, mechanical property, and cell behavior of electrospun poly(ε-caprolactone) mat

Effect of fiber diameter on surface morphology, mechanical property, and cell behavior of... Abstract In this study, electrospinning of poly(ε-caprolactone) (PCL) and its optimum preparation conditions were examined in detail using various solvent systems, such as formic acid, dichloromethane/dimethyl formamide (DMF), chloroform/DMF, and dichloroethane. The average fiber diameter of the electrospun PCL mat was controlled by the solvent used with a proper concentration of PCL dope solution. Different fiber sizes (0.1, 0.8, 1.9, and 3.4 μm) of uniform PCL mats were fabricated and the effects of fiber size on surface morphology, tensile properties and cell behavior were investigated. Here, we manipulated much broader range of average fiber diameter of the mats, from nano to several micron size of fiber. It was found that the fiber diameter greatly affected topology (surface roughness) and mechanical properties of the electrospun PCL mat and consequently, they influenced the cell behavior (adhesion and proliferation) significantly. We expect that these results will provide more feasible application of electrospun PCL scaffold in tissue engineering through the co-relations in structure and property of PCL fiber mat on cell behavior. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fibers and Polymers Springer Journals

Effect of fiber diameter on surface morphology, mechanical property, and cell behavior of electrospun poly(ε-caprolactone) mat

Loading next page...
 
/lp/springer-journals/effect-of-fiber-diameter-on-surface-morphology-mechanical-property-and-xGVIxmS90l

References (37)

Publisher
Springer Journals
Copyright
2016 The Korean Fiber Society and Springer Science+Business Media Dordrecht
ISSN
1229-9197
eISSN
1875-0052
DOI
10.1007/s12221-016-6350-x
Publisher site
See Article on Publisher Site

Abstract

Abstract In this study, electrospinning of poly(ε-caprolactone) (PCL) and its optimum preparation conditions were examined in detail using various solvent systems, such as formic acid, dichloromethane/dimethyl formamide (DMF), chloroform/DMF, and dichloroethane. The average fiber diameter of the electrospun PCL mat was controlled by the solvent used with a proper concentration of PCL dope solution. Different fiber sizes (0.1, 0.8, 1.9, and 3.4 μm) of uniform PCL mats were fabricated and the effects of fiber size on surface morphology, tensile properties and cell behavior were investigated. Here, we manipulated much broader range of average fiber diameter of the mats, from nano to several micron size of fiber. It was found that the fiber diameter greatly affected topology (surface roughness) and mechanical properties of the electrospun PCL mat and consequently, they influenced the cell behavior (adhesion and proliferation) significantly. We expect that these results will provide more feasible application of electrospun PCL scaffold in tissue engineering through the co-relations in structure and property of PCL fiber mat on cell behavior.

Journal

Fibers and PolymersSpringer Journals

Published: Jul 1, 2016

There are no references for this article.