Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Effect of disaccharides on survival during storage of freeze dried probiotics

Effect of disaccharides on survival during storage of freeze dried probiotics The aim of this study was to investigate the effects of protective media and different relative vapour pressures (RVPs) on the survival of probiotics during freeze drying and subsequent storage, to determine the optimal conditions for the production of freeze dried probiotics at industrial scale, ensuring a high survival rate. The effect of protective media i.e. reconstituted skimmed milk (RSM) or either of the cryoprotective disaccharides lactose, trehalose, sucrose, maltose, lactose + maltose and lactose + trehalose on the survival of a probiotic culture was assessed at five different RVP environments (0.0%, 11.4%, 33.2%, 44.1% and 76.1%) at room temperature in freeze-dried systems. RVP was shown to have a significant effect on the survival rates of the probiotic cultures Lactobacillus paracasei NFBC 338 and Lactobacillus rhamnosus GG following freeze drying in RSM. Interestingly, retention of cell viability was greatest for cells stored at 11.4% RVP, but was compromised at all other RVPs tested. However, an increased tolerance to freeze drying was observed for L. rhamnosus GG when dried in the presence of disaccharides in the order of trehalose = lactose + maltose ⩾ lactose + trehalose ⩾ maltose > lactose > sucrose. Survival studies over a 38–40 day storage period indicated that trehalose and lactose + maltose were the most effective cryoprotective additives, especially notable at 0.0 and 11.4% RVP. At all other RVPs tested, viability was compromised. Crystallisation of the disaccharides was observed to be a detrimental factor affecting the survival of Lactobacillus during storage at high RVP, where an inverse relationship was shown to exist between the % RVP and the glass transition temperature (Tg) of the disaccharides. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Dairy Science & Technology Springer Journals

Effect of disaccharides on survival during storage of freeze dried probiotics

Loading next page...
 
/lp/springer-journals/effect-of-disaccharides-on-survival-during-storage-of-freeze-dried-DISHLZ0E3m
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer S+B Media B.V.
Subject
Chemistry; Food Science; Agriculture; Microbiology
ISSN
1958-5586
eISSN
1958-5594
DOI
10.1051/dst:2007003
Publisher site
See Article on Publisher Site

Abstract

The aim of this study was to investigate the effects of protective media and different relative vapour pressures (RVPs) on the survival of probiotics during freeze drying and subsequent storage, to determine the optimal conditions for the production of freeze dried probiotics at industrial scale, ensuring a high survival rate. The effect of protective media i.e. reconstituted skimmed milk (RSM) or either of the cryoprotective disaccharides lactose, trehalose, sucrose, maltose, lactose + maltose and lactose + trehalose on the survival of a probiotic culture was assessed at five different RVP environments (0.0%, 11.4%, 33.2%, 44.1% and 76.1%) at room temperature in freeze-dried systems. RVP was shown to have a significant effect on the survival rates of the probiotic cultures Lactobacillus paracasei NFBC 338 and Lactobacillus rhamnosus GG following freeze drying in RSM. Interestingly, retention of cell viability was greatest for cells stored at 11.4% RVP, but was compromised at all other RVPs tested. However, an increased tolerance to freeze drying was observed for L. rhamnosus GG when dried in the presence of disaccharides in the order of trehalose = lactose + maltose ⩾ lactose + trehalose ⩾ maltose > lactose > sucrose. Survival studies over a 38–40 day storage period indicated that trehalose and lactose + maltose were the most effective cryoprotective additives, especially notable at 0.0 and 11.4% RVP. At all other RVPs tested, viability was compromised. Crystallisation of the disaccharides was observed to be a detrimental factor affecting the survival of Lactobacillus during storage at high RVP, where an inverse relationship was shown to exist between the % RVP and the glass transition temperature (Tg) of the disaccharides.

Journal

Dairy Science & TechnologySpringer Journals

Published: May 21, 2011

References