Access the full text.
Sign up today, get DeepDyve free for 14 days.
BackgroundParkinson’s disease (PD) is a neurodegenerative disease, which has an upward progression. In advanced stages, motor symptoms cause functional impairment to patients due to the degeneration of the substantia nigra. In early stages of PD, there is a sensory impairment, and patients report visual processing dysfunction. There is still no cure for PD, and early diagnosis is essential to slow disease progression.New methodGiven the good anatomical representation and organization of the visual system in the cerebral cortex, in this study, we propose a biomarker of PD using EEG signals, photic stimulation, partial directed coherence (PDC) to perform feature extraction, and machine learning (ML) techniques. Our goal is to classify participants into three distinct groups: PD patients who are medicated; patients with PD and drug deprivation; and healthy subjects.ResultsWe were able to achieve outstanding results, above 99% of accuracy and kappa statistic up to 0.98 using random forests and feature selection techniques. Comparison with existing methods: Our approach was evaluated using several ML methods. As features, we initially used the electrodes, without explicitly extracting feature vectors over signal samples.ConclusionsThe good results we obtained by using random forests made possible clinical applications for the early detection of PD and, consequently, better prognosis and patient’s quality of life.
Research on Biomedical Engineering – Springer Journals
Published: Sep 27, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.