Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Dynamics in a discrete-time predator-prey system with Allee effect

Dynamics in a discrete-time predator-prey system with Allee effect In this paper, dynamics of the discrete-time predator-prey system with Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using the center manifold theorem and bifurcation theory, and then further illustrated by numerical simulations. Chaos in the sense of Marotto is proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and rich dynamical behavior. More specifically, apart from stable dynamics, this paper presents the finding of chaos in the sense of Marotto together with a host of interesting phenomena connected to it. The analytic results and numerical simulations demostrates that the Allee constant plays a very important role for dynamical behavior. The dynamical behavior can move from complex instable states to stable states as the Allee constant increases (within a limited value). Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding of the discrete-time predator-prey with Allee effect is given. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mathematicae Applicatae Sinica Springer Journals

Dynamics in a discrete-time predator-prey system with Allee effect

Loading next page...
 
/lp/springer-journals/dynamics-in-a-discrete-time-predator-prey-system-with-allee-effect-vrQ0ZzZRZa
Publisher
Springer Journals
Copyright
Copyright © 2013 by Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg
Subject
Mathematics; Applications of Mathematics; Math Applications in Computer Science; Theoretical, Mathematical and Computational Physics
ISSN
0168-9673
eISSN
1618-3932
DOI
10.1007/s10255-013-0207-5
Publisher site
See Article on Publisher Site

Abstract

In this paper, dynamics of the discrete-time predator-prey system with Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using the center manifold theorem and bifurcation theory, and then further illustrated by numerical simulations. Chaos in the sense of Marotto is proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and rich dynamical behavior. More specifically, apart from stable dynamics, this paper presents the finding of chaos in the sense of Marotto together with a host of interesting phenomena connected to it. The analytic results and numerical simulations demostrates that the Allee constant plays a very important role for dynamical behavior. The dynamical behavior can move from complex instable states to stable states as the Allee constant increases (within a limited value). Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding of the discrete-time predator-prey with Allee effect is given.

Journal

Acta Mathematicae Applicatae SinicaSpringer Journals

Published: Mar 20, 2013

References