Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Blum, U. Stuhler (1997)
Vector Bundles on Curves ? New Directions
M Papikian (2012)
Local diophantine properties of modular curves ofJ. Reine Angew. Math., 664
MF Becker, S MacLane (1940)
The minimum number of generators for inseparable algebraic extensionsBull. Am. Math. Soc., 46
VG Drinfeld (1976)
Coverings ofFunkcional. Anal. i Priložen., 10
Joseph H. Silverman (1994)
Graduate Texts in Mathematics
VG Drinfeld (1974)
Elliptic modulesMat. Sb. (N.S.), 94
G-J Heiden (2004)
Weil pairing for Drinfeld modulesMonatsh. Math., 143
B Jordan (1986)
Points on Shimura curves rational over number fieldsJ. Reine Angew. Math., 371
M Papikian (2011)
On finite arithmetic simplicial complexesProc. Am. Math. Soc., 139
Marie-France Vignéras (1980)
Arithm�tique des Alg�bres de Quaternions
M Bornhofen, U Hartl (2011)
Pure Anderson motives and abelianMath. Z., 268
G Shimura (1975)
On the real points of an arithmetic quotient of a bounded symmetric domainMath. Ann., 215
T Hausberger (2005)
Uniformisation des vari�t�s de Laumon-Rapoport-Stuhler et conjecture de Drinfeld?CarayolAnn. Inst. Fourier (Grenoble), 55
B Jordan, R Livné (1985)
Local Diophantine properties of Shimura curvesMath. Ann., 270
E-U Gekeler (1983)
Zur Arithmetik von Drinfeld?ModulnMath. Ann., 262
E-U Gekeler (1991)
On finite Drinfeld modulesJ. Algebra, 141
M Papikian (2009)
Modular varieties ofJ. Reine Angew. Math., 626
M Papikian (2010)
Endomorphisms of exceptionalMath. Z., 266
Gebhard Böckle, Damián Gvirtz (2016)
Division algebras and maximal orders for given invariantsLMS Journal of Computation and Mathematics, 19
G Laumon, M Rapoport, U Stuhler (1993)
$$\mathscr {D}$$Invent. Math., 113
G Anderson (1986)
$$t$$Duke Math. J., 53
We study $$\mathscr {D}$$ D -elliptic sheaves in terms of their associated modules, which we call Drinfeld–Stuhler modules. First, we prove some basic results about Drinfeld–Stuhler modules and give explicit examples. Then we examine the existence and properties of Drinfeld–Stuhler modules with large endomorphism rings, which are analogous to CM and supersingular Drinfeld modules. Finally, we examine the fields of moduli of Drinfeld–Stuhler modules.
Research in the Mathematical Sciences – Springer Journals
Published: Oct 9, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.