Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Dihydroxylation of dehydroepiandrosterone in positions 7α and 15α by mycelial fungi

Dihydroxylation of dehydroepiandrosterone in positions 7α and 15α by mycelial fungi The ability of 485 fungal strains is studied for catalysis of the process of 7α, 15α-dihydroxylation of dehydroepiandrosterone (DHEA, 3β-hydroxy-5-androstene-17-one), a key intermediate of the synthesis of physiologically active compounds. The ability for the formation of 3β, 7α, 15α-trihydroxy-5-androstene-17-one (7α, 15α-diOH-DHEA) was found for the first time for representatives of 12 genera, eight families, and six orders of ascomycetes, eight genera, four families, and one order of zygomycetes, one genus, one family, and one order of basidiomycetes, and four genera of mitosporic fungi. The most active strains are found among genera Acremonium, Gibberella, Fusarium, and Nigrospora. In the process of transformation of DHEA (2 g/l) by strains of Fusarium oxysporum VKM F-1600 and Gibberella zeae BKM F-2600, the molar yield was 63 and 68%, respectively. Application of the revealed active strains of microorganisms opens prospects for the efficient production of key intermediates of synthesis of modern medical preparations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Biochemistry and Microbiology Springer Journals

Dihydroxylation of dehydroepiandrosterone in positions 7α and 15α by mycelial fungi

Loading next page...
 
/lp/springer-journals/dihydroxylation-of-dehydroepiandrosterone-in-positions-7-and-15-by-XX6VDhECr6

References (13)

Publisher
Springer Journals
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Medical Microbiology ; Microbiology ; Biochemistry, general
ISSN
0003-6838
eISSN
1608-3024
DOI
10.1134/S0003683809060076
Publisher site
See Article on Publisher Site

Abstract

The ability of 485 fungal strains is studied for catalysis of the process of 7α, 15α-dihydroxylation of dehydroepiandrosterone (DHEA, 3β-hydroxy-5-androstene-17-one), a key intermediate of the synthesis of physiologically active compounds. The ability for the formation of 3β, 7α, 15α-trihydroxy-5-androstene-17-one (7α, 15α-diOH-DHEA) was found for the first time for representatives of 12 genera, eight families, and six orders of ascomycetes, eight genera, four families, and one order of zygomycetes, one genus, one family, and one order of basidiomycetes, and four genera of mitosporic fungi. The most active strains are found among genera Acremonium, Gibberella, Fusarium, and Nigrospora. In the process of transformation of DHEA (2 g/l) by strains of Fusarium oxysporum VKM F-1600 and Gibberella zeae BKM F-2600, the molar yield was 63 and 68%, respectively. Application of the revealed active strains of microorganisms opens prospects for the efficient production of key intermediates of synthesis of modern medical preparations.

Journal

Applied Biochemistry and MicrobiologySpringer Journals

Published: Nov 6, 2009

There are no references for this article.