Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Development of hybrid optimization algorithm for structures furnished with seismic damper devices using the particle swarm optimization method and gravitational search algorithm

Development of hybrid optimization algorithm for structures furnished with seismic damper devices... Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process, and thereby are only applicable only to simple, single, or multiple degree-of-freedom structures. The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building; however, there are many different dampers and isolators that can be used. Furthermore, there is a lack of studies regarding the optimum location for various viscous and wall dampers. The main aim of this study is hybridization of the particle swarm optimization (PSO) and gravitational search algorithm (GSA) to optimize the performance of earthquake energy dissipation systems (i.e., damper devices) simultaneously with optimizing the characteristics of the structure. Four types of structural dampers device are considered in this study: (i) variable stiffness bracing (VSB) system, (ii) rubber wall damper (RWD), (iii) nonlinear conical spring bracing (NCSB) device, (iv) and multi-action stiffener (MAS) device. Since many parameters may affect the design of seismic resistant structures, this study proposes a hybrid of PSO and GSA to develop a hybrid, multi-objective optimization method to resolve the aforementioned problems. The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement (in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure. After that, the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response. To examine the performance of the proposed PSO-GSA optimization method, it has been applied to a three-story reinforced structure equipped with a seismic damper device. The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures, which significantly increase the building’s stability and safety during seismic excitation. The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%, 60.5%, 79.13% and 57.42% for the VSB device, RWD, NCSB device, and MAS device, respectively. This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Earthquake Engineering and Engineering Vibration Springer Journals

Development of hybrid optimization algorithm for structures furnished with seismic damper devices using the particle swarm optimization method and gravitational search algorithm

Loading next page...
 
/lp/springer-journals/development-of-hybrid-optimization-algorithm-for-structures-furnished-pJIhSg11Rp

References (51)

Publisher
Springer Journals
Copyright
Copyright © Institute of Engineering Mechanics, China Earthquake Administration 2022
ISSN
1671-3664
eISSN
1993-503X
DOI
10.1007/s11803-022-2088-1
Publisher site
See Article on Publisher Site

Abstract

Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process, and thereby are only applicable only to simple, single, or multiple degree-of-freedom structures. The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building; however, there are many different dampers and isolators that can be used. Furthermore, there is a lack of studies regarding the optimum location for various viscous and wall dampers. The main aim of this study is hybridization of the particle swarm optimization (PSO) and gravitational search algorithm (GSA) to optimize the performance of earthquake energy dissipation systems (i.e., damper devices) simultaneously with optimizing the characteristics of the structure. Four types of structural dampers device are considered in this study: (i) variable stiffness bracing (VSB) system, (ii) rubber wall damper (RWD), (iii) nonlinear conical spring bracing (NCSB) device, (iv) and multi-action stiffener (MAS) device. Since many parameters may affect the design of seismic resistant structures, this study proposes a hybrid of PSO and GSA to develop a hybrid, multi-objective optimization method to resolve the aforementioned problems. The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement (in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure. After that, the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response. To examine the performance of the proposed PSO-GSA optimization method, it has been applied to a three-story reinforced structure equipped with a seismic damper device. The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures, which significantly increase the building’s stability and safety during seismic excitation. The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%, 60.5%, 79.13% and 57.42% for the VSB device, RWD, NCSB device, and MAS device, respectively. This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration.

Journal

Earthquake Engineering and Engineering VibrationSpringer Journals

Published: Apr 1, 2022

Keywords: hybrid optimization algorithm; structures; earthquake; seismic damper devices; particle swarm optimization method; gravitational search algorithm

There are no references for this article.