Access the full text.
Sign up today, get DeepDyve free for 14 days.
Palladium-catalyzed decarboxylative cross-coupling was employed to synthesize 2-arylpyrroles via a flow process. This reaction features palladium as the only metal catalyst and uses easily accessible starting materials. The reaction temperature, the residence time, and the quantity of different reactants were investigated to achieve optimal reaction conditions. A variety of N-alkylated and N-arylated 2-arylpyrroles were produced in good to excellent yields. A N-methyl-2-arylpyrrole derivative was produced in 220 min on a 3 g scale in 84% yield. The flow set-up presented in this work is featuring a fixed bed reactor to load the insoluble Cs2CO3 necessary for the decarboxylative cross-coupling to occur, it also comprises a sample loop, and a stainless-steel reactor. This study demonstrated the excellent potential of utilizing a flow process for the synthesis of 2-arylpyrroles derivatives.Graphical abstract[graphic not available: see fulltext]
Journal of Flow Chemistry – Springer Journals
Published: Sep 1, 2022
Keywords: Decarboxylative cross-coupling; Pyrroles; Palladium-catalyzed reaction; Flow synthesis; Fixed-bed reactor
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.