Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Development of a fan-stirred constant volume combustion chamber and turbulence measurement with PIV

Development of a fan-stirred constant volume combustion chamber and turbulence measurement with PIV Abstract A fan-stirred combustion chamber is developed for spherically expanding flames, with P and T up to 10 bar and 473 K, respectively. Turbulence characteristics are estimated using particle image velocimetry (PIV) at different initial pressures (P = 0.5–5 bar), fan frequencies (ω = 0–2000 r/min), and impeller diameters (D = 100 and 114 mm). The flame propagation of methanol/air is investigated at different turbulence intensities (u′ =0–1.77 m/s) and equivalence ratios (ϕ = 0.7–1.5). The results show that u′ is independent of P and proportional to ω, which can be up to 3.5 m/s at 2000 r/min. LT is independent of P and performs a power regression with ω approximately. The turbulent field is homogeneous and isotropic in the central region of the chamber while the inertial subrange of spatial energy spectrum is more collapsed to −5/3 law at a high ReT. Compared to laminar expanding flames, the morphology of turbulent expanding flames is wrinkled and the wrinkles will be finer with the growth of turbulence intensity, consistent with the decline of the Taylor scale and the Kolmogorov scale. The determined SL in the present study is in good agreement with that of previous literature. The SL and ST of methanol/air have a non-monotonic trend with ϕ while peak ST is shifted to the richer side compared to SL. This indicates that the newly built turbulent combustion chamber is reliable for further experimental study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Frontiers in Energy Springer Journals

Development of a fan-stirred constant volume combustion chamber and turbulence measurement with PIV

Loading next page...
 
/lp/springer-journals/development-of-a-fan-stirred-constant-volume-combustion-chamber-and-rrFmd16nFc
Publisher
Springer Journals
Copyright
2021 Higher Education Press
ISSN
2095-1701
eISSN
2095-1698
DOI
10.1007/s11708-021-0762-z
Publisher site
See Article on Publisher Site

Abstract

Abstract A fan-stirred combustion chamber is developed for spherically expanding flames, with P and T up to 10 bar and 473 K, respectively. Turbulence characteristics are estimated using particle image velocimetry (PIV) at different initial pressures (P = 0.5–5 bar), fan frequencies (ω = 0–2000 r/min), and impeller diameters (D = 100 and 114 mm). The flame propagation of methanol/air is investigated at different turbulence intensities (u′ =0–1.77 m/s) and equivalence ratios (ϕ = 0.7–1.5). The results show that u′ is independent of P and proportional to ω, which can be up to 3.5 m/s at 2000 r/min. LT is independent of P and performs a power regression with ω approximately. The turbulent field is homogeneous and isotropic in the central region of the chamber while the inertial subrange of spatial energy spectrum is more collapsed to −5/3 law at a high ReT. Compared to laminar expanding flames, the morphology of turbulent expanding flames is wrinkled and the wrinkles will be finer with the growth of turbulence intensity, consistent with the decline of the Taylor scale and the Kolmogorov scale. The determined SL in the present study is in good agreement with that of previous literature. The SL and ST of methanol/air have a non-monotonic trend with ϕ while peak ST is shifted to the richer side compared to SL. This indicates that the newly built turbulent combustion chamber is reliable for further experimental study.

Journal

Frontiers in EnergySpringer Journals

Published: Jul 30, 2021

Keywords: energy systems; energy, general

References