Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Detection of doors using a genetic visual fuzzy system for mobile robots

Detection of doors using a genetic visual fuzzy system for mobile robots Doors are common objects in indoor environments and their detection can be used in robotic tasks such as map-building, navigation and positioning. This work presents a new approach to door-detection in indoor environments using computer vision. Doors are found in gray-level images by detecting the borders of their architraves. A variation of the Hough Transform is used in order to extract the segments in the image after applying the Canny edge detector. Features like length, direction, or distance between segments are used by a fuzzy system to analyze whether the relationship between them reveals the existence of doors. The system has been designed to detect rectangular doors typical of many indoor environments by the use of expert knowledge. Besides, a tuning mechanism based on a genetic algorithm is proposed to improve the performance of the system according to the particularities of the environment in which it is going to be employed. A large database of images containing doors of our building, seen from different angles and distances, has been created to test the performance of the system before and after the tuning process. The system has shown the ability to detect rectangular doors under heavy perspective deformations and it is fast enough to be used for real-time applications in a mobile robot. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Detection of doors using a genetic visual fuzzy system for mobile robots

Loading next page...
 
/lp/springer-journals/detection-of-doors-using-a-genetic-visual-fuzzy-system-for-mobile-2Hat8c0IgD

References (43)

Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science + Business Media, LLC
Subject
Engineering; Robotics and Automation; Artificial Intelligence (incl. Robotics); Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
DOI
10.1007/s10514-006-7847-8
Publisher site
See Article on Publisher Site

Abstract

Doors are common objects in indoor environments and their detection can be used in robotic tasks such as map-building, navigation and positioning. This work presents a new approach to door-detection in indoor environments using computer vision. Doors are found in gray-level images by detecting the borders of their architraves. A variation of the Hough Transform is used in order to extract the segments in the image after applying the Canny edge detector. Features like length, direction, or distance between segments are used by a fuzzy system to analyze whether the relationship between them reveals the existence of doors. The system has been designed to detect rectangular doors typical of many indoor environments by the use of expert knowledge. Besides, a tuning mechanism based on a genetic algorithm is proposed to improve the performance of the system according to the particularities of the environment in which it is going to be employed. A large database of images containing doors of our building, seen from different angles and distances, has been created to test the performance of the system before and after the tuning process. The system has shown the ability to detect rectangular doors under heavy perspective deformations and it is fast enough to be used for real-time applications in a mobile robot.

Journal

Autonomous RobotsSpringer Journals

Published: Aug 25, 2006

There are no references for this article.