Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

DeepRhole: deep learning for rhetorical role labeling of sentences in legal case documents

DeepRhole: deep learning for rhetorical role labeling of sentences in legal case documents The task of rhetorical role labeling is to assign labels (such as Fact, Argument, Final Judgement, etc.) to sentences of a court case document. Rhetorical role labeling is an important problem in the field of Legal Analytics, since it can aid in various downstream tasks as well as enhances the readability of lengthy case documents. The task is challenging as case documents are highly various in structure and the rhetorical labels are often subjective. Previous works for automatic rhetorical role identification (i) mainly used Conditional Random Fields over manually handcrafted features, and (ii) focused on certain law domains only (e.g., Immigration cases, Rent law), and a particular jurisdiction/country (e.g., US, Canada, India). In this work, we improve upon the prior works on rhetorical role identification by proposing novel Deep Learning models for automatically identifying rhetorical roles, which substantially outperform the prior methods. Additionally, we show the effectiveness of the proposed models over documents from five different law domains, and from two different jurisdictions—the Supreme Court of India and the Supreme Court of the UK. Through extensive experiments over different variations of the Deep Learning models, including Transformer models based on BERT and LegalBERT, we show the robustness of the methods for the task. We also perform an extensive inter-annotator study and analyse the agreement of the predictions of the proposed model with the annotations by domain experts. We find that some rhetorical labels are inherently hard/subjective and both law experts and neural models frequently get confused in predicting them correctly. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Artificial Intelligence and Law Springer Journals

DeepRhole: deep learning for rhetorical role labeling of sentences in legal case documents

Loading next page...
 
/lp/springer-journals/deeprhole-deep-learning-for-rhetorical-role-labeling-of-sentences-in-ZwDkmY8apI
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature B.V. 2021
ISSN
0924-8463
eISSN
1572-8382
DOI
10.1007/s10506-021-09304-5
Publisher site
See Article on Publisher Site

Abstract

The task of rhetorical role labeling is to assign labels (such as Fact, Argument, Final Judgement, etc.) to sentences of a court case document. Rhetorical role labeling is an important problem in the field of Legal Analytics, since it can aid in various downstream tasks as well as enhances the readability of lengthy case documents. The task is challenging as case documents are highly various in structure and the rhetorical labels are often subjective. Previous works for automatic rhetorical role identification (i) mainly used Conditional Random Fields over manually handcrafted features, and (ii) focused on certain law domains only (e.g., Immigration cases, Rent law), and a particular jurisdiction/country (e.g., US, Canada, India). In this work, we improve upon the prior works on rhetorical role identification by proposing novel Deep Learning models for automatically identifying rhetorical roles, which substantially outperform the prior methods. Additionally, we show the effectiveness of the proposed models over documents from five different law domains, and from two different jurisdictions—the Supreme Court of India and the Supreme Court of the UK. Through extensive experiments over different variations of the Deep Learning models, including Transformer models based on BERT and LegalBERT, we show the robustness of the methods for the task. We also perform an extensive inter-annotator study and analyse the agreement of the predictions of the proposed model with the annotations by domain experts. We find that some rhetorical labels are inherently hard/subjective and both law experts and neural models frequently get confused in predicting them correctly.

Journal

Artificial Intelligence and LawSpringer Journals

Published: Nov 13, 2021

Keywords: Rhetorical role labeling; Legal document segmentation; Court case documents; Hierarchical BiLSTM; Hierarchical BiLSTM CRF; BERT; LegalBERT

References