Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

CPG-based control of a turtle-like underwater vehicle

CPG-based control of a turtle-like underwater vehicle This paper presents biologically inspired control strategies for an autonomous underwater vehicle (AUV) propelled by flapping fins that resemble the paddle-like forelimbs of a sea turtle. Our proposed framework exploits limit cycle oscillators and diffusive couplings, thereby constructing coupled nonlinear oscillators, similar to the central pattern generators (CPGs) in animal spinal cords. This paper first presents rigorous stability analyses and experimental results of CPG-based control methods with and without actuator feedback to the CPG. In these methods, the CPG module generates synchronized oscillation patterns, which are sent to position-servoed flapping fin actuators as a reference input. In order to overcome the limitation of the open-loop CPG that the synchronization is occurring only between the reference signals, this paper introduces a new single-layered CPG method, where the CPG and the physical layers are combined as a single layer, to ensure the synchronization of the physical actuators in the presence of external disturbances. The key idea is to replace nonlinear oscillators in the conventional CPG models with physical actuators that oscillate due to nonlinear state feedback of the actuator states. Using contraction theory, a relatively new nonlinear stability tool, we show that coupled nonlinear oscillators globally synchronize to a specific pattern that can be stereotyped by an outer-loop controller. Results of experimentation with a turtle-like AUV show the feasibility of the proposed control laws. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

CPG-based control of a turtle-like underwater vehicle

Loading next page...
 
/lp/springer-journals/cpg-based-control-of-a-turtle-like-underwater-vehicle-m61jnMIAjL

References (46)

Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Engineering; Computer Imaging, Vision, Pattern Recognition and Graphics; Artificial Intelligence (incl. Robotics); Control , Robotics, Mechatronics; Robotics and Automation
ISSN
0929-5593
eISSN
1573-7527
DOI
10.1007/s10514-009-9169-0
Publisher site
See Article on Publisher Site

Abstract

This paper presents biologically inspired control strategies for an autonomous underwater vehicle (AUV) propelled by flapping fins that resemble the paddle-like forelimbs of a sea turtle. Our proposed framework exploits limit cycle oscillators and diffusive couplings, thereby constructing coupled nonlinear oscillators, similar to the central pattern generators (CPGs) in animal spinal cords. This paper first presents rigorous stability analyses and experimental results of CPG-based control methods with and without actuator feedback to the CPG. In these methods, the CPG module generates synchronized oscillation patterns, which are sent to position-servoed flapping fin actuators as a reference input. In order to overcome the limitation of the open-loop CPG that the synchronization is occurring only between the reference signals, this paper introduces a new single-layered CPG method, where the CPG and the physical layers are combined as a single layer, to ensure the synchronization of the physical actuators in the presence of external disturbances. The key idea is to replace nonlinear oscillators in the conventional CPG models with physical actuators that oscillate due to nonlinear state feedback of the actuator states. Using contraction theory, a relatively new nonlinear stability tool, we show that coupled nonlinear oscillators globally synchronize to a specific pattern that can be stereotyped by an outer-loop controller. Results of experimentation with a turtle-like AUV show the feasibility of the proposed control laws.

Journal

Autonomous RobotsSpringer Journals

Published: Jan 22, 2010

There are no references for this article.