Access the full text.
Sign up today, get DeepDyve free for 14 days.
The physio-chemical properties of metallic nanoparticles are different from their corresponding bulk material. Synthesizing stable zero valent copper nanoparticles is a challenge since they get oxidized easily. This paper discusses both the batch and continuous synthesis of copper nanoparticles using a polyol process in the absence of an inert atmosphere. The nanoparticles were synthesized using copper amine complex as a precursor, ascorbic acid as a reducing agent, and polyvinyl pyrrolidone as a capping agent. UV-Vis spectra confirmed that particles from a continuous synthesis had better Localized Surface Plasmon Resonance (LSPR) peak than those from batch synthesis. At 120 °C, nanoparticles in the continuous process could be synthesized at a residence time of 1 min in contrast to the batch reactor, which needed a reaction time of 4 min. The nanoparticles synthesized were of size 1.5–6 nm. Those synthesized in continuous mode were stable for 10 days as compared to those synthesized in batch mode.
Journal of Flow Chemistry – Springer Journals
Published: Sep 1, 2021
Keywords: Copper nanoparticles; Polyol process; Continuous flow synthesis; Residence time; Helical flow reactor
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.