Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract We design a new continuous diazotization microreaction process in which concentrated acid and sodium nitrite solutions are used. We form oil in water (O/W) microdroplets by mixing amine with sodium nitrite aqueous solution, which react with mineral acid to make the diazotization. In this way, the formed particles are dispersed in the aqueous phase, which can flow with the main stream, and consequently are consumed. Then the fluid can smoothly flow without clogging in the microchannels and we can achieve continuous operation. We use aniline, o-methylaniline, m-methylaniline, and o-ethylaniline as the raw materials, 6 M HCl and 6.5 M H2SO4 as the acid as well as sodium nitrite to demonstrate the feasibility. The resulting diazonium salts are converted to iodo-substitute aromatic compounds to measure the yield. The results show that, SIMM-V2 micromixer is efficient to form the emulsion. Mixing the microdroplets with acid in a co-axial flow way can prevent clogging. In hydrochloric acid medium, high reaction yield can be obtained when the reaction temperature is 4 °C and the residence time is 13–15 s. In sulfuric acid medium, high conversion of aromatic amine of up to 99% and yield of approximately 90% can be achieved at the reaction temperature of 9 °C and the residence time of 14–16 s. This process provides efficient continuous diazotization reactions using concentrated acid and sodium nitrite solutions, minimizing the production of waste water.
Journal of Flow Chemistry – Springer Journals
Published: Dec 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.