Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Consensus and collision detectors in radio networks

Consensus and collision detectors in radio networks We consider the fault-tolerant consensus problem in radio networks with crash-prone nodes. Specifically, we develop lower bounds and matching upper bounds for this problem in single-hop radios networks, where all nodes are located within broadcast range of each other. In a novel break from existing work, we introduce a collision-prone communication model in which each node may lose an arbitrary subset of the messages sent by its neighbors during each round. This model is motivated by behavior observed in empirical studies of these networks. To cope with this communication unreliability we augment nodes with receiver-side collision detectors and present a new classification of these detectors in terms of accuracy and completeness. This classification is motivated by practical realities and allows us to determine, roughly speaking, how much collision detection capability is enough to solve the consensus problem efficiently in this setting. We consider nine different combinations of completeness and accuracy properties in total, determining for each whether consensus is solvable, and, if it is, a lower bound on the number of rounds required. Furthermore, we distinguish anonymous and non-anonymous protocols—where “anonymous” implies that devices do not have unique identifiers—determining what effect (if any) this extra information has on the complexity of the problem. In all relevant cases, we provide matching upper bounds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Distributed Computing Springer Journals

Consensus and collision detectors in radio networks

Loading next page...
 
/lp/springer-journals/consensus-and-collision-detectors-in-radio-networks-c95Izu6j0A

References (42)

Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Computer Science; Theory of Computation ; Software Engineering/Programming and Operating Systems ; Computer Systems Organization and Communication Networks; Computer Hardware ; Computer Communication Networks
ISSN
0178-2770
eISSN
1432-0452
DOI
10.1007/s00446-008-0056-2
Publisher site
See Article on Publisher Site

Abstract

We consider the fault-tolerant consensus problem in radio networks with crash-prone nodes. Specifically, we develop lower bounds and matching upper bounds for this problem in single-hop radios networks, where all nodes are located within broadcast range of each other. In a novel break from existing work, we introduce a collision-prone communication model in which each node may lose an arbitrary subset of the messages sent by its neighbors during each round. This model is motivated by behavior observed in empirical studies of these networks. To cope with this communication unreliability we augment nodes with receiver-side collision detectors and present a new classification of these detectors in terms of accuracy and completeness. This classification is motivated by practical realities and allows us to determine, roughly speaking, how much collision detection capability is enough to solve the consensus problem efficiently in this setting. We consider nine different combinations of completeness and accuracy properties in total, determining for each whether consensus is solvable, and, if it is, a lower bound on the number of rounds required. Furthermore, we distinguish anonymous and non-anonymous protocols—where “anonymous” implies that devices do not have unique identifiers—determining what effect (if any) this extra information has on the complexity of the problem. In all relevant cases, we provide matching upper bounds.

Journal

Distributed ComputingSpringer Journals

Published: Mar 11, 2008

There are no references for this article.