Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Connected components of sets of finite perimeter and applications to image processing

Connected components of sets of finite perimeter and applications to image processing This paper contains a systematic analysis of a natural measure theoretic notion of connectedness for sets of finite perimeter in ℝ N , introduced by H. Federer in the more general framework of the theory of currents. We provide a new and simpler proof of the existence and uniqueness of the decomposition into the so-called M-connected components. Moreover, we study carefully the structure of the essential boundary of these components and give in particular a reconstruction formula of a set of finite perimeter from the family of the boundaries of its components. In the two dimensional case we show that this notion of connectedness is comparable with the topological one, modulo the choice of a suitable representative in the equivalence class. Our strong motivation for this study is a mathematical justification of all those operations in image processing that involve connectedness and boundaries. As an application, we use this weak notion of connectedness to provide a rigorous mathematical basis to a large class of denoising filters acting on connected components of level sets. We introduce a natural domain for these filters, the space WBV(Ω) of functions of weakly bounded variation in Ω, and show that these filters are also well behaved in the classical Sobolev and BV spaces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the European Mathematical Society Springer Journals

Connected components of sets of finite perimeter and applications to image processing

Loading next page...
 
/lp/springer-journals/connected-components-of-sets-of-finite-perimeter-and-applications-to-iS5je00JbX
Publisher
Springer Journals
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg & EMS
Subject
Mathematics; Mathematics, general
ISSN
1435-9855
DOI
10.1007/PL00011302
Publisher site
See Article on Publisher Site

Abstract

This paper contains a systematic analysis of a natural measure theoretic notion of connectedness for sets of finite perimeter in ℝ N , introduced by H. Federer in the more general framework of the theory of currents. We provide a new and simpler proof of the existence and uniqueness of the decomposition into the so-called M-connected components. Moreover, we study carefully the structure of the essential boundary of these components and give in particular a reconstruction formula of a set of finite perimeter from the family of the boundaries of its components. In the two dimensional case we show that this notion of connectedness is comparable with the topological one, modulo the choice of a suitable representative in the equivalence class. Our strong motivation for this study is a mathematical justification of all those operations in image processing that involve connectedness and boundaries. As an application, we use this weak notion of connectedness to provide a rigorous mathematical basis to a large class of denoising filters acting on connected components of level sets. We introduce a natural domain for these filters, the space WBV(Ω) of functions of weakly bounded variation in Ω, and show that these filters are also well behaved in the classical Sobolev and BV spaces.

Journal

Journal of the European Mathematical SocietySpringer Journals

Published: Feb 1, 2001

There are no references for this article.