Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Complex dynamics in a discrete-time predator-prey system without Allee effect

Complex dynamics in a discrete-time predator-prey system without Allee effect In this paper, complex dynamics of the discrete-time predator-prey system without Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory and checked up by numerical simulations. Chaos, in the sense of Marotto, is also proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and richer dynamics behaviors. More specifically, this paper presents the finding of period-one orbit, period-three orbits, and chaos in the sense of Marotto, complete period-doubling bifurcation and invariant circle leading to chaos with a great abundance period-windows, simultaneous occurrance of two different routes (invariant circle and inverse perioddoubling bifurcation, and period-doubling bifurcation and inverse period-doubling bifurcation) to chaos for a given bifurcation parameter, period doubling bifurcation with period-three orbits to chaos, suddenly appearing or disappearing chaos, different kind of interior crisis, nice chaotic attractors, coexisting (2,3,4) chaotic sets, non-attracting chaotic set, and so on, in the discrete-time predator-prey system. Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding is given of the discrete-time predator-prey systems with Allee effect and without Allee effect. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mathematicae Applicatae Sinica Springer Journals

Complex dynamics in a discrete-time predator-prey system without Allee effect

Loading next page...
 
/lp/springer-journals/complex-dynamics-in-a-discrete-time-predator-prey-system-without-allee-qoqBAJRbPp
Publisher
Springer Journals
Copyright
Copyright © 2013 by Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg
Subject
Mathematics; Applications of Mathematics; Math Applications in Computer Science; Theoretical, Mathematical and Computational Physics
ISSN
0168-9673
eISSN
1618-3932
DOI
10.1007/s10255-013-0221-7
Publisher site
See Article on Publisher Site

Abstract

In this paper, complex dynamics of the discrete-time predator-prey system without Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory and checked up by numerical simulations. Chaos, in the sense of Marotto, is also proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and richer dynamics behaviors. More specifically, this paper presents the finding of period-one orbit, period-three orbits, and chaos in the sense of Marotto, complete period-doubling bifurcation and invariant circle leading to chaos with a great abundance period-windows, simultaneous occurrance of two different routes (invariant circle and inverse perioddoubling bifurcation, and period-doubling bifurcation and inverse period-doubling bifurcation) to chaos for a given bifurcation parameter, period doubling bifurcation with period-three orbits to chaos, suddenly appearing or disappearing chaos, different kind of interior crisis, nice chaotic attractors, coexisting (2,3,4) chaotic sets, non-attracting chaotic set, and so on, in the discrete-time predator-prey system. Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding is given of the discrete-time predator-prey systems with Allee effect and without Allee effect.

Journal

Acta Mathematicae Applicatae SinicaSpringer Journals

Published: Apr 10, 2013

References