Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Complex Difference Equations of Malmquist Type

Complex Difference Equations of Malmquist Type In a recent paper [1], Ablowitz, Halburd and Herbst applied Nevanlinna theory to prove some results on complex difference equations reminiscent of the classical Malmquist theorem in complex differential equations. A typical example of their results tells us that if a complex difference equation y(z + 1) + y(z − 1) = R(z, y) with R(z, y) rational in both arguments admits a transcendental meromorphic solution of finite order, then degy R(z, y) ≤ 2. Improvements and extensions of such results are presented in this paper. In addition to order considerations, a result (see Theorem 13) is proved to indicate that solutions having Borel exceptional zeros and poles seem to appear in special situations only. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Methods and Function Theory Springer Journals

Loading next page...
 
/lp/springer-journals/complex-difference-equations-of-malmquist-type-ltSFTot1F0
Publisher
Springer Journals
Copyright
Copyright © 2001 by Heldermann Verlag
Subject
Mathematics; Analysis; Computational Mathematics and Numerical Analysis; Functions of a Complex Variable
ISSN
1617-9447
eISSN
2195-3724
DOI
10.1007/BF03320974
Publisher site
See Article on Publisher Site

Abstract

In a recent paper [1], Ablowitz, Halburd and Herbst applied Nevanlinna theory to prove some results on complex difference equations reminiscent of the classical Malmquist theorem in complex differential equations. A typical example of their results tells us that if a complex difference equation y(z + 1) + y(z − 1) = R(z, y) with R(z, y) rational in both arguments admits a transcendental meromorphic solution of finite order, then degy R(z, y) ≤ 2. Improvements and extensions of such results are presented in this paper. In addition to order considerations, a result (see Theorem 13) is proved to indicate that solutions having Borel exceptional zeros and poles seem to appear in special situations only.

Journal

Computational Methods and Function TheorySpringer Journals

Published: Mar 7, 2013

References