Access the full text.
Sign up today, get DeepDyve free for 14 days.
Bimodal amplitude modulation atomic force microscopy (AM-AFM) is widely used in nanoscale topography and compositional contrast imaging for various materials. In this work, we use computational simulation to compare the dynamic behaviors of AFM cantilevers in three commonly used excitation schemes in bimodal AM-AFM, i.e., the cantilever base excitation, the cantilever end excitation, and the uniform excitation along the length of the cantilever, in both air and liquid environments. The amplitude and phase spectroscopy curves and the frequency responses acquired from the three excitation schemes are compared and discussed. The results would be useful in guiding the selection of excitation methods and the optimization of imaging conditions.
"Acta Mechanica Solida Sinica" – Springer Journals
Published: Nov 6, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.