Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Co-precipitation synthesis and performance of multi-doped LiCrxNixMn2-2xO4-zFz cathode materials for lithium ion batteries

Co-precipitation synthesis and performance of multi-doped LiCrxNixMn2-2xO4-zFz cathode materials... Multiple ion-doped lithium manganese oxides LiCrxNixMn2-2xO4-zFz (0 < x ≤ 0.25, z =  0.05, 0.1) with a spinel structure and space group Fd $$ \overline{3} $$  m were prepared by using the co-precipitation procedure carried out in water–alcohol solvent using adipic acid as the chelating agent. The electrochemical measurements indicated that the charge/discharge capacities of the samples prepared at 600 °C are higher than that of the treatment at 800 °C or microwave heating. The capacitance-voltage (CV) curves of LiCrxNixMn2-2xO4-zFz (0 < x ≤ 0.25, z = 0.05, 0.1) showed that when x ≤ 0.1, the samples had two reduction–oxidation peaks at 4.0 to 4.2-V region, whereas when x > 0.1, the samples had only one reduction–oxidation peak at 4.0- to 4.2-V region in CV measurements and could offer more stable voltage plateau in a 4-V region and also had stable electrical conductivity after 20 cycles. Another reduction–oxidation peak appeared in 4.6-4.8-V region (Ni2+–Ni4+ reduction–oxidation peaks); this suggests that the LiCrxNixMn2-2xO4-zFz (0.1 < x≤ 0.25, z = 0.05, 0.1) cathode material could offer 4.6 to 4.8-V charge/discharge plateaus, and its specific capacity increases with increasing Ni2+. The impedance measurements of the cell proved that the F− anion doped can not only prevent Mn3+ from disproportion but also can prevent the passivation film from forming and can help keep stable the cell’s electrical properties. The LiCr0.05Ni0.05Mn1.9O3.9F0.1 sintered at 600 °C shows the best cycle performance and the largest capacity in all prepared samples; its first discharge capacity is 120 mAh/g, and the discharge capacity loses only 1.78% after 20 cycles. After 100 cycles, it still remains in the spinel structure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ionics Springer Journals

Co-precipitation synthesis and performance of multi-doped LiCrxNixMn2-2xO4-zFz cathode materials for lithium ion batteries

Ionics , Volume 12 (6) – Jan 5, 2007

Loading next page...
 
/lp/springer-journals/co-precipitation-synthesis-and-performance-of-multi-doped-licrxnixmn2-wsyjgMtM2z

References (26)

Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Chemistry; Electrochemistry; Renewable and Green Energy; Optical and Electronic Materials; Condensed Matter Physics; Energy Storage
ISSN
0947-7047
eISSN
1862-0760
DOI
10.1007/s11581-006-0056-9
Publisher site
See Article on Publisher Site

Abstract

Multiple ion-doped lithium manganese oxides LiCrxNixMn2-2xO4-zFz (0 < x ≤ 0.25, z =  0.05, 0.1) with a spinel structure and space group Fd $$ \overline{3} $$  m were prepared by using the co-precipitation procedure carried out in water–alcohol solvent using adipic acid as the chelating agent. The electrochemical measurements indicated that the charge/discharge capacities of the samples prepared at 600 °C are higher than that of the treatment at 800 °C or microwave heating. The capacitance-voltage (CV) curves of LiCrxNixMn2-2xO4-zFz (0 < x ≤ 0.25, z = 0.05, 0.1) showed that when x ≤ 0.1, the samples had two reduction–oxidation peaks at 4.0 to 4.2-V region, whereas when x > 0.1, the samples had only one reduction–oxidation peak at 4.0- to 4.2-V region in CV measurements and could offer more stable voltage plateau in a 4-V region and also had stable electrical conductivity after 20 cycles. Another reduction–oxidation peak appeared in 4.6-4.8-V region (Ni2+–Ni4+ reduction–oxidation peaks); this suggests that the LiCrxNixMn2-2xO4-zFz (0.1 < x≤ 0.25, z = 0.05, 0.1) cathode material could offer 4.6 to 4.8-V charge/discharge plateaus, and its specific capacity increases with increasing Ni2+. The impedance measurements of the cell proved that the F− anion doped can not only prevent Mn3+ from disproportion but also can prevent the passivation film from forming and can help keep stable the cell’s electrical properties. The LiCr0.05Ni0.05Mn1.9O3.9F0.1 sintered at 600 °C shows the best cycle performance and the largest capacity in all prepared samples; its first discharge capacity is 120 mAh/g, and the discharge capacity loses only 1.78% after 20 cycles. After 100 cycles, it still remains in the spinel structure.

Journal

IonicsSpringer Journals

Published: Jan 5, 2007

There are no references for this article.