Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Clinical Prediction from Structural Brain MRI Scans: A Large-Scale Empirical Study

Clinical Prediction from Structural Brain MRI Scans: A Large-Scale Empirical Study Multivariate pattern analysis (MVPA) methods have become an important tool in neuroimaging, revealing complex associations and yielding powerful prediction models. Despite methodological developments and novel application domains, there has been little effort to compile benchmark results that researchers can reference and compare against. This study takes a significant step in this direction. We employed three classes of state-of-the-art MVPA algorithms and common types of structural measurements from brain Magnetic Resonance Imaging (MRI) scans to predict an array of clinically relevant variables (diagnosis of Alzheimer’s, schizophrenia, autism, and attention deficit and hyperactivity disorder; age, cerebrospinal fluid derived amyloid-β levels and mini-mental state exam score). We analyzed data from over 2,800 subjects, compiled from six publicly available datasets. The employed data and computational tools are freely distributed ( https://www.nmr.mgh.harvard.edu/lab/mripredict ), making this the largest, most comprehensive, reproducible benchmark image-based prediction experiment to date in structural neuroimaging. Finally, we make several observations regarding the factors that influence prediction performance and point to future research directions. Unsurprisingly, our results suggest that the biological footprint (effect size) has a dramatic influence on prediction performance. Though the choice of image measurement and MVPA algorithm can impact the result, there was no universally optimal selection. Intriguingly, the choice of algorithm seemed to be less critical than the choice of measurement type. Finally, our results showed that cross-validation estimates of performance, while generally optimistic, correlate well with generalization accuracy on a new dataset. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroinformatics Springer Journals

Clinical Prediction from Structural Brain MRI Scans: A Large-Scale Empirical Study

Neuroinformatics , Volume 13 (1) – Jul 22, 2014

Loading next page...
 
/lp/springer-journals/clinical-prediction-from-structural-brain-mri-scans-a-large-scale-0btkBT0ybA

References (60)

Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Biomedicine; Neurosciences; Bioinformatics; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Neurology
ISSN
1539-2791
eISSN
1559-0089
DOI
10.1007/s12021-014-9238-1
pmid
25048627
Publisher site
See Article on Publisher Site

Abstract

Multivariate pattern analysis (MVPA) methods have become an important tool in neuroimaging, revealing complex associations and yielding powerful prediction models. Despite methodological developments and novel application domains, there has been little effort to compile benchmark results that researchers can reference and compare against. This study takes a significant step in this direction. We employed three classes of state-of-the-art MVPA algorithms and common types of structural measurements from brain Magnetic Resonance Imaging (MRI) scans to predict an array of clinically relevant variables (diagnosis of Alzheimer’s, schizophrenia, autism, and attention deficit and hyperactivity disorder; age, cerebrospinal fluid derived amyloid-β levels and mini-mental state exam score). We analyzed data from over 2,800 subjects, compiled from six publicly available datasets. The employed data and computational tools are freely distributed ( https://www.nmr.mgh.harvard.edu/lab/mripredict ), making this the largest, most comprehensive, reproducible benchmark image-based prediction experiment to date in structural neuroimaging. Finally, we make several observations regarding the factors that influence prediction performance and point to future research directions. Unsurprisingly, our results suggest that the biological footprint (effect size) has a dramatic influence on prediction performance. Though the choice of image measurement and MVPA algorithm can impact the result, there was no universally optimal selection. Intriguingly, the choice of algorithm seemed to be less critical than the choice of measurement type. Finally, our results showed that cross-validation estimates of performance, while generally optimistic, correlate well with generalization accuracy on a new dataset.

Journal

NeuroinformaticsSpringer Journals

Published: Jul 22, 2014

There are no references for this article.