Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Climatic features of the south-westerly low-level jet over southeast china and its association with precipitation over east China

Climatic features of the south-westerly low-level jet over southeast china and its association... Abstract The major features of the south-westerly low-level jet (LLJ) in the lower troposphere over Southeast China and its climatic impacts are investigated by using FNL reanalysis data and observational precipitation data. Results show that LLJ mainly occurs in spring and summer and the occurrence frequency of LLJ over southeast China has significant diurnal cycle, most LLJ occur in the nighttime (0200 LST and 0800 LST). The high nocturnal occurrence frequency of LLJ is mainly resulting from increased nocturnal ageostrophic wind. Research on the climatic impacts of large-scale conditions depicts that, the occurrence of LLJ in April mainly results from the northward shifting of western pacific subtropical high (WPSH), and the occurrence of LLJ in July results from the strengthening of detouring flow around Tibetan Plateau. Analysis of the climatic effects of LLJ on precipitation distribution in 3 rainy seasons over Southeast China indicates that the rainfall events with strong intensity correspond to strong LLJs. The LLJ affects the precipitation over Southeast China by transporting water vapor and triggering upward motion. Rainfall regions well corresponds to the regions of the moisture convergence and strong upward motion triggered by LLJ. Negative wind divergence anomalies at 850 hPa and positive wind divergence anomalies at 200 hPa over the Yangtze-Huaihe River Valley strengthen the upward motion over this region, which are conductive to produce more precipitation over the Yangtze-Huaihe River Valley. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Asia-Pacific Journal of Atmospheric Sciences" Springer Journals

Climatic features of the south-westerly low-level jet over southeast china and its association with precipitation over east China

Loading next page...
 
/lp/springer-journals/climatic-features-of-the-south-westerly-low-level-jet-over-southeast-1idKneLiNh

References (32)

Publisher
Springer Journals
Copyright
2013 Korean Meteorological Society and Springer Science+Business Media Dordrecht
ISSN
1976-7633
eISSN
1976-7951
DOI
10.1007/s13143-013-0025-y
Publisher site
See Article on Publisher Site

Abstract

Abstract The major features of the south-westerly low-level jet (LLJ) in the lower troposphere over Southeast China and its climatic impacts are investigated by using FNL reanalysis data and observational precipitation data. Results show that LLJ mainly occurs in spring and summer and the occurrence frequency of LLJ over southeast China has significant diurnal cycle, most LLJ occur in the nighttime (0200 LST and 0800 LST). The high nocturnal occurrence frequency of LLJ is mainly resulting from increased nocturnal ageostrophic wind. Research on the climatic impacts of large-scale conditions depicts that, the occurrence of LLJ in April mainly results from the northward shifting of western pacific subtropical high (WPSH), and the occurrence of LLJ in July results from the strengthening of detouring flow around Tibetan Plateau. Analysis of the climatic effects of LLJ on precipitation distribution in 3 rainy seasons over Southeast China indicates that the rainfall events with strong intensity correspond to strong LLJs. The LLJ affects the precipitation over Southeast China by transporting water vapor and triggering upward motion. Rainfall regions well corresponds to the regions of the moisture convergence and strong upward motion triggered by LLJ. Negative wind divergence anomalies at 850 hPa and positive wind divergence anomalies at 200 hPa over the Yangtze-Huaihe River Valley strengthen the upward motion over this region, which are conductive to produce more precipitation over the Yangtze-Huaihe River Valley.

Journal

"Asia-Pacific Journal of Atmospheric Sciences"Springer Journals

Published: May 1, 2013

There are no references for this article.