Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon

Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao... In Central Cameroon cocoa is mainly produced by household farming systems based on complex associations between cocoa and companion trees. Setup either on native/remnant forest or savannah, these agroforestry systems (AFS) are managed according their geographical position and local pedoclimatic conditions. In this paper, we investigated the effects of local management strategies on carbon (C) storage of live trees in three different cocoa production zones of Central Cameroon. In the 58 fields studied, 8,996 cocoa trees and 1,258 companions were surveyed. Tree sampling was non-destructive and to estimate C storage we used allometric models for above- and belowground biomasses. We measured abundance, height, diameter at breast height and determined species of companion trees. We distinguished between four cocoa plantation age categories (immature, young, mature and senescent) and three preceding systems (forest, forest gallery and savannah). We surveyed farmers’ use of each associated tree, allocated it to a functional category and asked if it had been introduced or conserved. Total C content of live trees was on average close to 70 t ha −1 . We found that it mostly relied on associated trees—cocoa trees contribution being ac. 2–12 % of live trees total C. The level of contribution to C storage of companions from different use categories differed between sites—trees producing food had contributed most in Bokito and Obala while trees used for shading or fertility contributed most in Ngomedzap. Dynamics of C storage in live trees was found to be independent from cocoa trees growth and age. When aging, AFS continuously lost companion trees and especially conserved ones putatively because of farmers’ selective logging. Yet, AFS apparently maintained equivalent C storage abilities with time. Hence, even if cocoa do not contribute significantly to C storage in our study, the systems into which they are included are able to significantly store C and may also contribute to other ecological services such as conservation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agroforestry Systems Springer Journals

Carbon storage and density dynamics of associated trees in three contrasting Theobroma cacao agroforests of Central Cameroon

Loading next page...
 
/lp/springer-journals/carbon-storage-and-density-dynamics-of-associated-trees-in-three-vICeyhSasR

References (0)

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Forestry; Agriculture
ISSN
0167-4366
eISSN
1572-9680
DOI
10.1007/s10457-013-9639-4
Publisher site
See Article on Publisher Site

Abstract

In Central Cameroon cocoa is mainly produced by household farming systems based on complex associations between cocoa and companion trees. Setup either on native/remnant forest or savannah, these agroforestry systems (AFS) are managed according their geographical position and local pedoclimatic conditions. In this paper, we investigated the effects of local management strategies on carbon (C) storage of live trees in three different cocoa production zones of Central Cameroon. In the 58 fields studied, 8,996 cocoa trees and 1,258 companions were surveyed. Tree sampling was non-destructive and to estimate C storage we used allometric models for above- and belowground biomasses. We measured abundance, height, diameter at breast height and determined species of companion trees. We distinguished between four cocoa plantation age categories (immature, young, mature and senescent) and three preceding systems (forest, forest gallery and savannah). We surveyed farmers’ use of each associated tree, allocated it to a functional category and asked if it had been introduced or conserved. Total C content of live trees was on average close to 70 t ha −1 . We found that it mostly relied on associated trees—cocoa trees contribution being ac. 2–12 % of live trees total C. The level of contribution to C storage of companions from different use categories differed between sites—trees producing food had contributed most in Bokito and Obala while trees used for shading or fertility contributed most in Ngomedzap. Dynamics of C storage in live trees was found to be independent from cocoa trees growth and age. When aging, AFS continuously lost companion trees and especially conserved ones putatively because of farmers’ selective logging. Yet, AFS apparently maintained equivalent C storage abilities with time. Hence, even if cocoa do not contribute significantly to C storage in our study, the systems into which they are included are able to significantly store C and may also contribute to other ecological services such as conservation.

Journal

Agroforestry SystemsSpringer Journals

Published: Dec 1, 2013

There are no references for this article.