Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Carbon Sequestration Potential of Urban Trees: A Case of Kolar Area in Bhopal City, India

Carbon Sequestration Potential of Urban Trees: A Case of Kolar Area in Bhopal City, India With higher targets for economic and social development, cities and urban areas are expanding and releasing higher amounts of greenhouse gases into the atmosphere, of which carbon dioxide has the highest percentage composition. In order to combat climate change, there is a need to capture carbon released through anthropogenic activities. The study was conducted in a ward of the rapidly growing Kolar area of Bhopal city which is the capital of Madhya Pradesh state of India. It quantifies total biomass and amount of carbon content in each urban tree species of the study area using the non-destructive biometric method comprising of diameter at breast height (DBH), tree height, wood densities, and above-ground and below-ground biomass estimations through allometric equations. Sample of three plots of 25 hectares each was chosen based on density and diversity of urban trees and density of building footprints and the average of existing tree count were taken. Based on the highest level of carbon sequestered by the studied tree species, ward level interventions are proposed depending on tree count per hectare to reach an optimum level. The study and the recommendations will prove to be helpful in afforestation projects for urban landscapes and reducing the local area carbon dioxide equivalent concentrations. The integration of the same in the local action plans for each city of the country will have a big contribution in achieving the national targets for increasing carbon sinks in urban areas under National Mission for a Green India by 2030. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of The Institution of Engineers (India):Series A Springer Journals

Carbon Sequestration Potential of Urban Trees: A Case of Kolar Area in Bhopal City, India

Loading next page...
 
/lp/springer-journals/carbon-sequestration-potential-of-urban-trees-a-case-of-kolar-area-in-GaG3DuZHd5
Publisher
Springer Journals
Copyright
Copyright © The Institution of Engineers (India) 2022
ISSN
2250-2149
eISSN
2250-2157
DOI
10.1007/s40030-022-00621-9
Publisher site
See Article on Publisher Site

Abstract

With higher targets for economic and social development, cities and urban areas are expanding and releasing higher amounts of greenhouse gases into the atmosphere, of which carbon dioxide has the highest percentage composition. In order to combat climate change, there is a need to capture carbon released through anthropogenic activities. The study was conducted in a ward of the rapidly growing Kolar area of Bhopal city which is the capital of Madhya Pradesh state of India. It quantifies total biomass and amount of carbon content in each urban tree species of the study area using the non-destructive biometric method comprising of diameter at breast height (DBH), tree height, wood densities, and above-ground and below-ground biomass estimations through allometric equations. Sample of three plots of 25 hectares each was chosen based on density and diversity of urban trees and density of building footprints and the average of existing tree count were taken. Based on the highest level of carbon sequestered by the studied tree species, ward level interventions are proposed depending on tree count per hectare to reach an optimum level. The study and the recommendations will prove to be helpful in afforestation projects for urban landscapes and reducing the local area carbon dioxide equivalent concentrations. The integration of the same in the local action plans for each city of the country will have a big contribution in achieving the national targets for increasing carbon sinks in urban areas under National Mission for a Green India by 2030.

Journal

Journal of The Institution of Engineers (India):Series ASpringer Journals

Published: Mar 15, 2022

Keywords: Carbon dioxide; Carbon sequestration; Urban trees; Biomass

References