Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Building a FP-CIT SPECT Brain Template Using a Posterization Approach

Building a FP-CIT SPECT Brain Template Using a Posterization Approach Spatial affine registration of brain images to a common template is usually performed as a preprocessing step in intersubject and intrasubject comparison studies, computer-aided diagnosis, region of interest selection and brain segmentation in tomography. Nevertheless, it is not straightforward to build a template of [123I]FP-CIT SPECT brain images because they exhibit very low intensity values outside the striatum. In this work, we present a procedure to automatically build a [123I]FP-CIT SPECT template in the standard Montreal Neurological Institute (MNI) space. The proposed methodology consists of a head voxel selection using the Otsu’s method, followed by a posterization of the source images to three different levels: background, head, and striatum. Analogously, we also design a posterized version of a brain image in the MNI space; subsequently, we perform a spatial affine registration of the posterized source images to this image. The intensity of the transformed images is normalized linearly, assuming that the histogram of the intensity values follows an alpha-stable distribution. Lastly, we build the [123I]FP-CIT SPECT template by means of the transformed and normalized images. The proposed methodology is a fully automatic procedure that has been shown to work accurately even when a high-resolution magnetic resonance image for each subject is not available. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroinformatics Springer Journals

Building a FP-CIT SPECT Brain Template Using a Posterization Approach

Loading next page...
 
/lp/springer-journals/building-a-fp-cit-spect-brain-template-using-a-posterization-approach-09W0njOIKz
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Biomedicine; Neurosciences; Bioinformatics; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Neurology
ISSN
1539-2791
eISSN
1559-0089
DOI
10.1007/s12021-015-9262-9
pmid
25749984
Publisher site
See Article on Publisher Site

Abstract

Spatial affine registration of brain images to a common template is usually performed as a preprocessing step in intersubject and intrasubject comparison studies, computer-aided diagnosis, region of interest selection and brain segmentation in tomography. Nevertheless, it is not straightforward to build a template of [123I]FP-CIT SPECT brain images because they exhibit very low intensity values outside the striatum. In this work, we present a procedure to automatically build a [123I]FP-CIT SPECT template in the standard Montreal Neurological Institute (MNI) space. The proposed methodology consists of a head voxel selection using the Otsu’s method, followed by a posterization of the source images to three different levels: background, head, and striatum. Analogously, we also design a posterized version of a brain image in the MNI space; subsequently, we perform a spatial affine registration of the posterized source images to this image. The intensity of the transformed images is normalized linearly, assuming that the histogram of the intensity values follows an alpha-stable distribution. Lastly, we build the [123I]FP-CIT SPECT template by means of the transformed and normalized images. The proposed methodology is a fully automatic procedure that has been shown to work accurately even when a high-resolution magnetic resonance image for each subject is not available.

Journal

NeuroinformaticsSpringer Journals

Published: Mar 7, 2015

References