Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Brain Age Prediction in Developing Childhood with Multimodal Magnetic Resonance Images

Brain Age Prediction in Developing Childhood with Multimodal Magnetic Resonance Images It is well known that brain development is very fast and complex in the early childhood with age-based neurological and physiological changes of brain structure and function. The brain maturity is an important indicator for evaluating the normal development of children. In this paper, we propose a multimodal regression framework to combine the features from structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI) data for age prediction of children. First, three types of features are extracted from sMRI and DTI data. Second, we propose to combine the sparse coding and Q-Learning for feature selection from each modality. Finally, the ensemble regression is performed by random forest based on proximity measures to fuse multimodal features for age prediction. The proposed method is evaluated on 212 participants, including 76 young children less than 2 years old and 136 children aged from 2-15 years old recruited from Shanghai Children’s Hospital. The results show that integrating multimodal features has achieved the highest accuracies with the root mean squared error (RMSE) of 0.208 years and mean absolute error (MAE) of 0.150 years for age prediction of young children (0-2), and RMSE of 1.666 years and MAE of 1.087 years for older children (2-15). We have shown that the selected features by Q-Learning can consistently improve the prediction accuracy. The comparison of prediction results demonstrates that the proposed method performs better than other competing methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroinformatics Springer Journals

Brain Age Prediction in Developing Childhood with Multimodal Magnetic Resonance Images

Neuroinformatics , Volume OnlineFirst – Aug 12, 2022

Loading next page...
 
/lp/springer-journals/brain-age-prediction-in-developing-childhood-with-multimodal-magnetic-EWxHaBkKQM
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
1539-2791
eISSN
1559-0089
DOI
10.1007/s12021-022-09596-1
Publisher site
See Article on Publisher Site

Abstract

It is well known that brain development is very fast and complex in the early childhood with age-based neurological and physiological changes of brain structure and function. The brain maturity is an important indicator for evaluating the normal development of children. In this paper, we propose a multimodal regression framework to combine the features from structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI) data for age prediction of children. First, three types of features are extracted from sMRI and DTI data. Second, we propose to combine the sparse coding and Q-Learning for feature selection from each modality. Finally, the ensemble regression is performed by random forest based on proximity measures to fuse multimodal features for age prediction. The proposed method is evaluated on 212 participants, including 76 young children less than 2 years old and 136 children aged from 2-15 years old recruited from Shanghai Children’s Hospital. The results show that integrating multimodal features has achieved the highest accuracies with the root mean squared error (RMSE) of 0.208 years and mean absolute error (MAE) of 0.150 years for age prediction of young children (0-2), and RMSE of 1.666 years and MAE of 1.087 years for older children (2-15). We have shown that the selected features by Q-Learning can consistently improve the prediction accuracy. The comparison of prediction results demonstrates that the proposed method performs better than other competing methods.

Journal

NeuroinformaticsSpringer Journals

Published: Aug 12, 2022

Keywords: Magnetic resonance imaging; Brain age prediction; Reinforcement Q-Learning; Children’s brain development; Random forest

There are no references for this article.