Access the full text.
Sign up today, get DeepDyve free for 14 days.
We prove that the natural map Hb 2(Γ)?H2(Γ) from bounded to usual cohomology is injective if Γ is an irreducible cocompact lattice in a higher rank Lie group. This result holds also for nontrivial unitary coefficients, and implies finiteness results for Γ: the stable commutator length vanishes and any C1–action on the circle is almost trivial. We introduce the continuous bounded cohomology of a locally compact group and prove our statements by relating Hb •(Γ) to the continuous bounded cohomology of the ambient group with coefficients in some induction module.
Journal of the European Mathematical Society – Springer Journals
Published: Apr 1, 1999
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.