Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Bond-associated non-ordinary state-based peridynamic model for multiple spalling simulation of concrete

Bond-associated non-ordinary state-based peridynamic model for multiple spalling simulation of... The non-ordinary state-based peridynamic (NOSB PD) model has the capability of incorporating existing constitutive relationships in the classical continuum mechanics. In the present work, we first develop an NOSB PD model corresponding to the Johnson–Holmquist II (JH-2) constitutive damage model, which can describe the severe damage of concrete under intense impact compression. Besides, the numerical oscillation problem of the NOSB PD caused by zero-energy mode is analyzed and hence a bond-associated non-ordinary state-based peridynamic (BA-NOSB PD) model is adopted to remove the oscillation. Then, the elastic deformation of a three-dimensional bar is analyzed to verify the capability of BA-NOSB PD in eliminating the numerical oscillation. Furthermore, concrete spalling caused by the interaction of incident compression wave and reflected tension wave is simulated. The dynamic tensile fracture process of concrete multiple spalling is accurately reproduced for several examples according to the spalling number and spalling thickness analysis, illustrating the approach can well simulate and analyze the concrete spalling discontinuities. Graphic Abstract[graphic not available: see fulltext] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Acta Mechanica Sinica" Springer Journals

Bond-associated non-ordinary state-based peridynamic model for multiple spalling simulation of concrete

Loading next page...
 
/lp/springer-journals/bond-associated-non-ordinary-state-based-peridynamic-model-for-MbneQf6dGm

References (65)

Publisher
Springer Journals
Copyright
Copyright © The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2021
ISSN
0567-7718
eISSN
1614-3116
DOI
10.1007/s10409-021-01055-5
Publisher site
See Article on Publisher Site

Abstract

The non-ordinary state-based peridynamic (NOSB PD) model has the capability of incorporating existing constitutive relationships in the classical continuum mechanics. In the present work, we first develop an NOSB PD model corresponding to the Johnson–Holmquist II (JH-2) constitutive damage model, which can describe the severe damage of concrete under intense impact compression. Besides, the numerical oscillation problem of the NOSB PD caused by zero-energy mode is analyzed and hence a bond-associated non-ordinary state-based peridynamic (BA-NOSB PD) model is adopted to remove the oscillation. Then, the elastic deformation of a three-dimensional bar is analyzed to verify the capability of BA-NOSB PD in eliminating the numerical oscillation. Furthermore, concrete spalling caused by the interaction of incident compression wave and reflected tension wave is simulated. The dynamic tensile fracture process of concrete multiple spalling is accurately reproduced for several examples according to the spalling number and spalling thickness analysis, illustrating the approach can well simulate and analyze the concrete spalling discontinuities. Graphic Abstract[graphic not available: see fulltext]

Journal

"Acta Mechanica Sinica"Springer Journals

Published: Jul 1, 2021

Keywords: Non-ordinary state-based peridynamics; Bond-associated horizon; Johnson–Holmquist II (JH-2) model; Wave propagation; Multiple spalling

There are no references for this article.