Access the full text.
Sign up today, get DeepDyve free for 14 days.
We say that a class G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {G}}$$\end{document} of analytic functions f of the form f(z)=∑n=0∞anzn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f(z)=\sum _{n=0}^{\infty } a_{n}z^{n}$$\end{document} in the unit disk D:={z∈C:|z|<1}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {D}}:=\{z\in {\mathbb {C}}: |z|<1\}$$\end{document} satisfies a Bohr phenomenon if for the largest radius Rf<1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$R_{f}<1$$\end{document}, the following inequality ∑n=1∞|anzn|≤d(f(0),∂f(D))\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \sum \limits _{n=1}^{\infty } |a_{n}z^{n}| \le d(f(0),\partial f({\mathbb {D}}) ) \end{aligned}$$\end{document}holds for |z|=r≤Rf\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$|z|=r\le R_{f}$$\end{document} and for all functions f∈G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f \in {\mathcal {G}}$$\end{document}. The largest radius Rf\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$R_{f}$$\end{document} is called Bohr radius for the class G\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {G}}$$\end{document}. In this article, we obtain the Bohr radius for certain subclasses of close-to-convex analytic functions. We establish the Bohr phenomenon for certain analytic classes Sc∗(ϕ),Cc(ϕ),Cs∗(ϕ),Ks(ϕ)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {S}}_{c}^{*}(\phi ),\,{\mathcal {C}}_{c}(\phi ),\, {\mathcal {C}}_{s}^{*}(\phi ),\, {\mathcal {K}}_{s}(\phi )$$\end{document} and obtain the radius Rf\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$R_{f}$$\end{document} such that the Bohr phenomenon for these classes holds for |z|=r≤Rf\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$|z|=r\le R_{f}$$\end{document}. As a consequence of these results, we obtain several interesting corollaries about the Bohr phenomenon for the aforesaid classes.
Computational Methods and Function Theory – Springer Journals
Published: Sep 1, 2022
Keywords: Starlike; Convex; Close-to-convex; Quasi-convex functions; Conjugate points; Symmetric points; Subordination; Majorant series; Bohr radius; Primary 30C45; 30C50; 30C80
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.