Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Bipolar membrane modified by cation/anion exchange nanofibers containing copper phthalocyanine derivatives with different substituents

Bipolar membrane modified by cation/anion exchange nanofibers containing copper phthalocyanine... Abstract Carboxymethyl cellulose (CMC)-polyvinyl alcohol (PVA) and chitosan (CS)-polyvinyl alcohol were cross-linked by Fe3+ and glutaraldehyde respectively to prepare the cation exchange membrane layer and the anion exchange membrane layer, polyvinyl alcohol-sodium alginate (SA)-copper phthalocyanine tetrasulfonic acid (CuTsPc, or copper tetracarboxy phthalocyanine: CuTcPc) cation exchange nanofibers or polyvinyl alcohol-chitosan-copper tetraaminophthalocyanine (CuTAPc) anion exchange nanofibers prepared by electrospinning technique were introduced into the interlayer to obtain the modified bipolar membrane (BPM). The experimental results showed that in comparison with the BPM without the cation/anion exchange nanofibers interlayer, the water splitting efficiency of the modified BPM was obviously increased, and its membrane impedance decreased. When the concentration of CuTsPc in the PVA-SA-CuTsPc nanofibers was 3.0 %, the transmembrane voltage drop (IR drop) of the CMC-PVA/PVA-SA-CuTsPc/CS-PVA BPM was as low as 0.5 V at a high current density of 90 mA·cm−2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fibers and Polymers Springer Journals

Bipolar membrane modified by cation/anion exchange nanofibers containing copper phthalocyanine derivatives with different substituents

Loading next page...
 
/lp/springer-journals/bipolar-membrane-modified-by-cation-anion-exchange-nanofibers-QWPbsqLGTI

References (17)

Publisher
Springer Journals
Copyright
2014 The Korean Fiber Society and Springer Science+Business Media Dordrecht
ISSN
1229-9197
eISSN
1875-0052
DOI
10.1007/s12221-014-0018-1
Publisher site
See Article on Publisher Site

Abstract

Abstract Carboxymethyl cellulose (CMC)-polyvinyl alcohol (PVA) and chitosan (CS)-polyvinyl alcohol were cross-linked by Fe3+ and glutaraldehyde respectively to prepare the cation exchange membrane layer and the anion exchange membrane layer, polyvinyl alcohol-sodium alginate (SA)-copper phthalocyanine tetrasulfonic acid (CuTsPc, or copper tetracarboxy phthalocyanine: CuTcPc) cation exchange nanofibers or polyvinyl alcohol-chitosan-copper tetraaminophthalocyanine (CuTAPc) anion exchange nanofibers prepared by electrospinning technique were introduced into the interlayer to obtain the modified bipolar membrane (BPM). The experimental results showed that in comparison with the BPM without the cation/anion exchange nanofibers interlayer, the water splitting efficiency of the modified BPM was obviously increased, and its membrane impedance decreased. When the concentration of CuTsPc in the PVA-SA-CuTsPc nanofibers was 3.0 %, the transmembrane voltage drop (IR drop) of the CMC-PVA/PVA-SA-CuTsPc/CS-PVA BPM was as low as 0.5 V at a high current density of 90 mA·cm−2.

Journal

Fibers and PolymersSpringer Journals

Published: Jan 1, 2014

Keywords: Polymer Sciences

There are no references for this article.