Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this study, the nonlocal strain gradient theory is adopted to investigate the static bending deformation of a functionally graded (FG) multilayered nanoplate made of one-dimensional hexagonal piezoelectric quasicrystal (PQC) materials subjected to mechanical and electrical surface loadings. The FG materials are assumed to be exponential distribution along the thickness direction. Exact closed-form solutions of an FG PQC nanoplate including nonlocality and strain gradient micro-size dependency are derived by utilizing the pseudo-Stroh formalism. The propagator matrix method is further used to solve the multilayered case by assuming that the layer interfaces are perfectly contacted. Numerical examples for two FG sandwich nanoplates made of piezoelectric crystals and PQC are provided to show the influences of nonlocal parameter, strain gradient parameter, exponential factor, length-to-width ratio, loading form, and stacking sequence on the static deformation of two FG sandwich nanoplates, which play an important role in designing new smart composite structures in engineering.
"Acta Mechanica Solida Sinica" – Springer Journals
Published: Nov 18, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.