Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Backbone resonance assignments of the Escherichia coli 62kDa protein, Hsp31

Backbone resonance assignments of the Escherichia coli 62kDa protein, Hsp31 Dimeric Hsp31 protein was first characterized as a holding chaperone of Escherichia coli (E. coli), and has been suggested as having protease activity due to the presence of a potential catalytic triad, Cys185, His186, and Asp214. However, it has recently been reported that Hsp31 displays a relatively strong glyoxalase III activity that can decompose reactive carbonyl species (methylglyoxal and glyoxal) in the absence of additional cofactor. Hsp31 is a representative member of the DJ-1/ThiJ/PfpI protein superfamily, and the importance of DJ-1 protein in Parkinson’s disease has been well known. The structural flexibility of the long loop region, which encompasses from the P- to the A-domain, is important for the chaperone activity of Hsp31. The backbone chemical shifts (CSs) would be useful for studying the structural changes of Hsp31 that are critical for the holding chaperone activity, and also for deciphering the switching mechanism between the glyoxalase III and the chaperone. Here, we report the backbone CSs (HN, N, CO, Cα, and Cβ) of the deuterated Hsp31 protein (62 kDa). The CS analysis showed that the predicted regions of secondary structures are in good agreement with those observed in the previous crystal structure of Hsp31. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomolecular NMR Assignments Springer Journals

Backbone resonance assignments of the Escherichia coli 62kDa protein, Hsp31

Loading next page...
 
/lp/springer-journals/backbone-resonance-assignments-of-the-escherichia-coli-62kda-protein-XUpskpMx05

References (25)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Physics; Biological and Medical Physics, Biophysics; Polymer Sciences; Biochemistry, general
ISSN
1874-2718
eISSN
1874-270X
DOI
10.1007/s12104-017-9739-6
pmid
28258548
Publisher site
See Article on Publisher Site

Abstract

Dimeric Hsp31 protein was first characterized as a holding chaperone of Escherichia coli (E. coli), and has been suggested as having protease activity due to the presence of a potential catalytic triad, Cys185, His186, and Asp214. However, it has recently been reported that Hsp31 displays a relatively strong glyoxalase III activity that can decompose reactive carbonyl species (methylglyoxal and glyoxal) in the absence of additional cofactor. Hsp31 is a representative member of the DJ-1/ThiJ/PfpI protein superfamily, and the importance of DJ-1 protein in Parkinson’s disease has been well known. The structural flexibility of the long loop region, which encompasses from the P- to the A-domain, is important for the chaperone activity of Hsp31. The backbone chemical shifts (CSs) would be useful for studying the structural changes of Hsp31 that are critical for the holding chaperone activity, and also for deciphering the switching mechanism between the glyoxalase III and the chaperone. Here, we report the backbone CSs (HN, N, CO, Cα, and Cβ) of the deuterated Hsp31 protein (62 kDa). The CS analysis showed that the predicted regions of secondary structures are in good agreement with those observed in the previous crystal structure of Hsp31.

Journal

Biomolecular NMR AssignmentsSpringer Journals

Published: Mar 3, 2017

There are no references for this article.