Access the full text.
Sign up today, get DeepDyve free for 14 days.
We propose an automated multi-atlas and multi-ROI based segmentation method for both skull-stripping of mouse brain and the ROI-labeling of mouse brain structures from the three dimensional (3D) magnetic resonance images (MRI). Three main steps are involved in our method. First, a region of interest (ROI) guided warping algorithm is designed to register multi-atlas images to the subject space, by considering more on the matching of image contents around the ROI boundaries which are more important for ROI labeling. Then, a multi-atlas and multi-ROI based deformable segmentation method is adopted to refine the ROI labeling result by deforming each ROI surface via boundary recognizers (i.e., SVM classifiers) trained on local surface patches. Finally, a local-mutual-information (MI) based multi-label fusion technique is proposed for allowing the atlases with better local image similarity with the subject to have more contributions in label fusion. The experimental results show that our method works better than the conventional methods on both in vitro and in vivo mouse brain datasets.
Neuroinformatics – Springer Journals
Published: Oct 2, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.