Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper undertakes a study of asymptotic behavior of solutions corresponding to von Karman thermoelastic plates. A distinct feature of the work is that the model considered has no added dissipation —particularly mechanical dissipation typically added to plate equation when long time-behavior is considered. Thus, the model consists of undamped oscillatory plate equation strongly coupled with heat equation. Nevertheless we are able to show that the ultimate (asymptotic) behavior of the von Karman evolution is described by finite dimensional global attractor. In addition, the obtained estimate for the dimension and the size of the attractor are independent of the rotational inertia parameter γ and heat/thermal capacity κ , where the former is known to change the character of dynamics from hyperbolic ( γ >0) to parabolic like ( γ =0). Other properties of attractors such as additional smoothness and upper-semicontinuity with respect to parameters γ and κ are also established. The main ingredients of the proofs are (i) sharp regularity of Airy’s stress function, and (ii) newly developed (Chueshov and Lasiecka in Memoirs of AMS, in press) “compensated” compactness methods applicable to non-compact dynamics.
Applied Mathematics and Optimization – Springer Journals
Published: Oct 1, 2008
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.