Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Asymptotic Functions of Entire Functions

Asymptotic Functions of Entire Functions If f is an entire function and a is a complex number, a is said to be an asymptotic value of f if there exists a path γ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\gamma $$\end{document} from 0 to infinity such that f(z)-a\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f(z) - a$$\end{document} tends to 0 as z tends to infinity along γ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\gamma $$\end{document}. The Denjoy–Carleman–Ahlfors Theorem asserts that if f has n distinct asymptotic values, then the rate of growth of f is at least order n/2, mean type. A long-standing problem asks whether this conclusion holds for entire functions having n distinct asymptotic (entire) functions, each of growth at most order 1/2, minimal type. In this paper conditions on the function f and associated asymptotic paths are obtained that are sufficient to guarantee that f satisfies the conclusion of the Denjoy–Carleman–Ahlfors Theorem. In addition, for each positive integer n, an example is given of an entire function of order n having n distinct, prescribed asymptotic functions, each of order less than 1/2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Methods and Function Theory Springer Journals

Loading next page...
 
/lp/springer-journals/asymptotic-functions-of-entire-functions-J1QO3rA7dN
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
ISSN
1617-9447
eISSN
2195-3724
DOI
10.1007/s40315-021-00396-3
Publisher site
See Article on Publisher Site

Abstract

If f is an entire function and a is a complex number, a is said to be an asymptotic value of f if there exists a path γ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\gamma $$\end{document} from 0 to infinity such that f(z)-a\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f(z) - a$$\end{document} tends to 0 as z tends to infinity along γ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\gamma $$\end{document}. The Denjoy–Carleman–Ahlfors Theorem asserts that if f has n distinct asymptotic values, then the rate of growth of f is at least order n/2, mean type. A long-standing problem asks whether this conclusion holds for entire functions having n distinct asymptotic (entire) functions, each of growth at most order 1/2, minimal type. In this paper conditions on the function f and associated asymptotic paths are obtained that are sufficient to guarantee that f satisfies the conclusion of the Denjoy–Carleman–Ahlfors Theorem. In addition, for each positive integer n, an example is given of an entire function of order n having n distinct, prescribed asymptotic functions, each of order less than 1/2.

Journal

Computational Methods and Function TheorySpringer Journals

Published: Dec 1, 2021

Keywords: Entire function; Asymptotic function; Asymptotic value; Primary 30D20; Secondary 31A05

References