Access the full text.
Sign up today, get DeepDyve free for 14 days.
We study doubly-periodic instantons, i.e. instantons on the product of a 1-dimensional complex torus T with a complex line ℂ, with quadratic curvature decay. We determine the asymptotic behaviour of these instantons, constructing new asymptotic invariants. We show that the underlying holomorphic bundle extends to T×ℙ1. The converse statement is also true, namely a holomorphic bundle on T×ℙ1 which is flat on the torus at infinity, and satisfies a stability condition, comes from a doubly-periodic instanton. Finally, we study the hyperkähler geometry of the moduli space of doubly-periodic instantons, and prove that the Nahm transform previously defined by the second author is a hyperkähler isometry with the moduli space of certain meromorphic Higgs bundles on the dual torus.
Journal of the European Mathematical Society – Springer Journals
Published: Nov 1, 2001
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.