Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract The nonlinear problem of non-stationary heat conductivity of the layered anisotropic heat-sensitive shells was formulated taking into account the linear dependence of thermal-physical characteristics of the materials of phase compositions on the temperature. The initial-boundary-value problem is formulated in the dimensionless form, and four small parameters are identified: thermal-physical, characterizing the degree of heat sensitivity of the layer material; geometric, characterizing the relative thickness of the thin-walled structure, and two small Biot numbers on the front surfaces of shells. A sequential recursion of dimensionless equations is carried out, at first, using the thermalphysical small parameter, then, small Biot numbers and, finally, geometrical small parameter. The first type of recursion allowed us to linearize the problem of heat conductivity, and on the basis of two latter types of recursion, the outer asymptotic expansion of solution to the problem of non-stationary heat conductivity of the layered anisotropic non-uniform shells and plates under boundary conditions of the II and III kind and small Biot numbers on the facial surfaces was built, taking into account heat sensitivity of the layer materials. The resulting two-dimensional boundary problems were analyzed, and asymptotic properties of solutions to the heat conductivity problem were studied. The physical explanation was given to some aspects of asymptotic temperature decomposition.
Thermophysics and Aeromechanics – Springer Journals
Published: Mar 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.