Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Architectural space planning using evolutionary computing approaches: a review

Architectural space planning using evolutionary computing approaches: a review This paper presents various applications of evolutionary computing approach for architectural space planning problem. As such the problem of architectural space planning is NP-complete. Finding an optimal solution within a reasonable amount of time for these problems is impossible. However for architectural space planning problem we may not be even looking for an optimal but some feasible solution based on varied parameters. Many different computing approaches for space planning like procedural algorithms, heuristic search based methods, genetic algorithms, fuzzy logic, and artificial neural networks etc. have been developed and are being employed. In recent years evolutionary computation approaches have been applied to a wide variety of applications as it has the advantage of giving reasonably acceptable solution in a reasonable amount of time. There are also hybrid systems such as neural network and fuzzy logic which incorporates the features of evolutionary computing paradigm. The present paper aims to compare the various aspects and merits/demerits of each of these methods developed so far. Sixteen papers have been reviewed and compared on various parameters such as input features, output produced, set of constraints, scope of space coverage-single floor, multi-floor and urban spaces. Recent publications emphasized on energy aspect as well. The paper will help the better understanding of the Evolutionary computing perspective of solving architectural space planning problem. The findings of this paper provide useful insight into current developments and are beneficial for those who look for automating architectural space planning task within given design constraints. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Artificial Intelligence Review Springer Journals

Architectural space planning using evolutionary computing approaches: a review

Loading next page...
 
/lp/springer-journals/architectural-space-planning-using-evolutionary-computing-approaches-a-1bgFL2hu4q

References (41)

Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Computer Science; Computer Science, general; Artificial Intelligence (incl. Robotics)
ISSN
0269-2821
eISSN
1573-7462
DOI
10.1007/s10462-011-9217-y
Publisher site
See Article on Publisher Site

Abstract

This paper presents various applications of evolutionary computing approach for architectural space planning problem. As such the problem of architectural space planning is NP-complete. Finding an optimal solution within a reasonable amount of time for these problems is impossible. However for architectural space planning problem we may not be even looking for an optimal but some feasible solution based on varied parameters. Many different computing approaches for space planning like procedural algorithms, heuristic search based methods, genetic algorithms, fuzzy logic, and artificial neural networks etc. have been developed and are being employed. In recent years evolutionary computation approaches have been applied to a wide variety of applications as it has the advantage of giving reasonably acceptable solution in a reasonable amount of time. There are also hybrid systems such as neural network and fuzzy logic which incorporates the features of evolutionary computing paradigm. The present paper aims to compare the various aspects and merits/demerits of each of these methods developed so far. Sixteen papers have been reviewed and compared on various parameters such as input features, output produced, set of constraints, scope of space coverage-single floor, multi-floor and urban spaces. Recent publications emphasized on energy aspect as well. The paper will help the better understanding of the Evolutionary computing perspective of solving architectural space planning problem. The findings of this paper provide useful insight into current developments and are beneficial for those who look for automating architectural space planning task within given design constraints.

Journal

Artificial Intelligence ReviewSpringer Journals

Published: May 1, 2011

There are no references for this article.