Access the full text.
Sign up today, get DeepDyve free for 14 days.
PurposeCoronavirus disease is an irresistible infection caused by the respiratory disease coronavirus 2 (SARS-CoV-2). It was first found in Wuhan, China, in December 2019, and has since spread universally, causing a constant pandemic. On June 3, 2020, 6.37 million cases were found in 188 countries and regions. During pandemic prevention, this can minimize the impact of the disease on individuals and groups. A study was carried out on coronavirus to observe the number of cases, deaths, and recovery cases worldwide within a specific time period of 5 months. Based on this data, this research paper will predict the future spread of this infectious disease in human society.MethodsIn our study, the dataset was taken from WHO “Data WHO Coronavirus Covid-19 cases and deaths-WHO-COVID-19-global-data”. This dataset contains information about the observation date, provenance/state, country/region, and latest updates. In this article, we implemented several forecasting techniques: naive method, simple average, moving average, single exponential smoothing, Holt linear trend method, Holt-Winters method and ARIMA, for comparison, and how these methods improve the Root mean square error score.ResultsThe naive method is best suited as described over all other methods. In the ARIMA model, utilizing grid search, we recognized a lot of boundaries that delivered the best-fit model for our time series data. By continuing the model, future predictions of death cases indicate that the number of deaths will increased by more than 600,000 by January 2021.ConclusionThis survey will support the government and experts in making arrangements for what is about to happen. Based on the findings of instantaneous model, these models can be adjusted to guide long time.
Research on Biomedical Engineering – Springer Journals
Published: Mar 1, 2022
Keywords: COVID-19; SARS-CoV-2; WHO; Forecasting techniques; ARIMA
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.