Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Antioxidant activity of hydroxy derivatives of coumarin

Antioxidant activity of hydroxy derivatives of coumarin The inhibition efficiency (antioxidant activity) of hydroxy derivatives of coumarin, such as esculetin, dicumarol, and fraxetin, was studied in the methemalbumin-H2O2-tetramethylbenzidine (TMB) pseudoperoxidase system at 20°C in a buffered physiological solution (pH 7.4) containing 6% DMF and 0.25% DMSO. The inhibitor’s efficiency was quantitatively characterized by the inhibition constants (K i, μM) and the inhibition degree (%). The K i values for esculetin, dicumarol, and fraxetin were 9.5, 15, and 26 μM, respectively. Esculetin and fraxetin inhibited pseudoperoxidase oxidation of TMB in a noncompetitive manner; dicumarol, in a mixed manner. The inhibiting activity of esculetin in peroxidase-catalyzed TMB oxidation at pH 6.4 is characterized by a K i value equal to 1.15 μM, and the inhibition process is competitive. Esculetin was found to be the most effective antioxidant of plant origin among all derivatives previously studied in model biochemical systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Biochemistry and Microbiology Springer Journals

Antioxidant activity of hydroxy derivatives of coumarin

Loading next page...
 
/lp/springer-journals/antioxidant-activity-of-hydroxy-derivatives-of-coumarin-4Ez75eWyNP

References (7)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Biochemistry, general; Microbiology; Medical Microbiology
ISSN
0003-6838
eISSN
1608-3024
DOI
10.1134/S0003683812030106
Publisher site
See Article on Publisher Site

Abstract

The inhibition efficiency (antioxidant activity) of hydroxy derivatives of coumarin, such as esculetin, dicumarol, and fraxetin, was studied in the methemalbumin-H2O2-tetramethylbenzidine (TMB) pseudoperoxidase system at 20°C in a buffered physiological solution (pH 7.4) containing 6% DMF and 0.25% DMSO. The inhibitor’s efficiency was quantitatively characterized by the inhibition constants (K i, μM) and the inhibition degree (%). The K i values for esculetin, dicumarol, and fraxetin were 9.5, 15, and 26 μM, respectively. Esculetin and fraxetin inhibited pseudoperoxidase oxidation of TMB in a noncompetitive manner; dicumarol, in a mixed manner. The inhibiting activity of esculetin in peroxidase-catalyzed TMB oxidation at pH 6.4 is characterized by a K i value equal to 1.15 μM, and the inhibition process is competitive. Esculetin was found to be the most effective antioxidant of plant origin among all derivatives previously studied in model biochemical systems.

Journal

Applied Biochemistry and MicrobiologySpringer Journals

Published: May 4, 2012

There are no references for this article.